| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lnopeq0.1 |
⊢ 𝑇 ∈ LinOp |
| 2 |
1
|
lnopeq0lem2 |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑧 ) = ( ( ( ( ( 𝑇 ‘ ( 𝑦 +ℎ 𝑧 ) ) ·ih ( 𝑦 +ℎ 𝑧 ) ) − ( ( 𝑇 ‘ ( 𝑦 −ℎ 𝑧 ) ) ·ih ( 𝑦 −ℎ 𝑧 ) ) ) + ( i · ( ( ( 𝑇 ‘ ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) ) ·ih ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) ) − ( ( 𝑇 ‘ ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) ) ·ih ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) ) ) ) ) / 4 ) ) |
| 3 |
2
|
adantl |
⊢ ( ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = 0 ∧ ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ) → ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑧 ) = ( ( ( ( ( 𝑇 ‘ ( 𝑦 +ℎ 𝑧 ) ) ·ih ( 𝑦 +ℎ 𝑧 ) ) − ( ( 𝑇 ‘ ( 𝑦 −ℎ 𝑧 ) ) ·ih ( 𝑦 −ℎ 𝑧 ) ) ) + ( i · ( ( ( 𝑇 ‘ ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) ) ·ih ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) ) − ( ( 𝑇 ‘ ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) ) ·ih ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) ) ) ) ) / 4 ) ) |
| 4 |
|
hvaddcl |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑦 +ℎ 𝑧 ) ∈ ℋ ) |
| 5 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ ( 𝑦 +ℎ 𝑧 ) ) ) |
| 6 |
|
id |
⊢ ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
| 7 |
5 6
|
oveq12d |
⊢ ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = ( ( 𝑇 ‘ ( 𝑦 +ℎ 𝑧 ) ) ·ih ( 𝑦 +ℎ 𝑧 ) ) ) |
| 8 |
7
|
eqeq1d |
⊢ ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = 0 ↔ ( ( 𝑇 ‘ ( 𝑦 +ℎ 𝑧 ) ) ·ih ( 𝑦 +ℎ 𝑧 ) ) = 0 ) ) |
| 9 |
8
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = 0 ∧ ( 𝑦 +ℎ 𝑧 ) ∈ ℋ ) → ( ( 𝑇 ‘ ( 𝑦 +ℎ 𝑧 ) ) ·ih ( 𝑦 +ℎ 𝑧 ) ) = 0 ) |
| 10 |
4 9
|
sylan2 |
⊢ ( ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = 0 ∧ ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ) → ( ( 𝑇 ‘ ( 𝑦 +ℎ 𝑧 ) ) ·ih ( 𝑦 +ℎ 𝑧 ) ) = 0 ) |
| 11 |
|
hvsubcl |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑦 −ℎ 𝑧 ) ∈ ℋ ) |
| 12 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑦 −ℎ 𝑧 ) → ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ ( 𝑦 −ℎ 𝑧 ) ) ) |
| 13 |
|
id |
⊢ ( 𝑥 = ( 𝑦 −ℎ 𝑧 ) → 𝑥 = ( 𝑦 −ℎ 𝑧 ) ) |
| 14 |
12 13
|
oveq12d |
⊢ ( 𝑥 = ( 𝑦 −ℎ 𝑧 ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = ( ( 𝑇 ‘ ( 𝑦 −ℎ 𝑧 ) ) ·ih ( 𝑦 −ℎ 𝑧 ) ) ) |
| 15 |
14
|
eqeq1d |
⊢ ( 𝑥 = ( 𝑦 −ℎ 𝑧 ) → ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = 0 ↔ ( ( 𝑇 ‘ ( 𝑦 −ℎ 𝑧 ) ) ·ih ( 𝑦 −ℎ 𝑧 ) ) = 0 ) ) |
| 16 |
15
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = 0 ∧ ( 𝑦 −ℎ 𝑧 ) ∈ ℋ ) → ( ( 𝑇 ‘ ( 𝑦 −ℎ 𝑧 ) ) ·ih ( 𝑦 −ℎ 𝑧 ) ) = 0 ) |
| 17 |
11 16
|
sylan2 |
⊢ ( ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = 0 ∧ ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ) → ( ( 𝑇 ‘ ( 𝑦 −ℎ 𝑧 ) ) ·ih ( 𝑦 −ℎ 𝑧 ) ) = 0 ) |
| 18 |
10 17
|
oveq12d |
⊢ ( ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = 0 ∧ ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ) → ( ( ( 𝑇 ‘ ( 𝑦 +ℎ 𝑧 ) ) ·ih ( 𝑦 +ℎ 𝑧 ) ) − ( ( 𝑇 ‘ ( 𝑦 −ℎ 𝑧 ) ) ·ih ( 𝑦 −ℎ 𝑧 ) ) ) = ( 0 − 0 ) ) |
| 19 |
|
0m0e0 |
⊢ ( 0 − 0 ) = 0 |
| 20 |
18 19
|
eqtrdi |
⊢ ( ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = 0 ∧ ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ) → ( ( ( 𝑇 ‘ ( 𝑦 +ℎ 𝑧 ) ) ·ih ( 𝑦 +ℎ 𝑧 ) ) − ( ( 𝑇 ‘ ( 𝑦 −ℎ 𝑧 ) ) ·ih ( 𝑦 −ℎ 𝑧 ) ) ) = 0 ) |
| 21 |
|
ax-icn |
⊢ i ∈ ℂ |
| 22 |
|
hvmulcl |
⊢ ( ( i ∈ ℂ ∧ 𝑧 ∈ ℋ ) → ( i ·ℎ 𝑧 ) ∈ ℋ ) |
| 23 |
21 22
|
mpan |
⊢ ( 𝑧 ∈ ℋ → ( i ·ℎ 𝑧 ) ∈ ℋ ) |
| 24 |
|
hvaddcl |
⊢ ( ( 𝑦 ∈ ℋ ∧ ( i ·ℎ 𝑧 ) ∈ ℋ ) → ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) ∈ ℋ ) |
| 25 |
23 24
|
sylan2 |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) ∈ ℋ ) |
| 26 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) → ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) ) ) |
| 27 |
|
id |
⊢ ( 𝑥 = ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) → 𝑥 = ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) ) |
| 28 |
26 27
|
oveq12d |
⊢ ( 𝑥 = ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = ( ( 𝑇 ‘ ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) ) ·ih ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) ) ) |
| 29 |
28
|
eqeq1d |
⊢ ( 𝑥 = ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) → ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = 0 ↔ ( ( 𝑇 ‘ ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) ) ·ih ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) ) = 0 ) ) |
| 30 |
29
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = 0 ∧ ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) ∈ ℋ ) → ( ( 𝑇 ‘ ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) ) ·ih ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) ) = 0 ) |
| 31 |
25 30
|
sylan2 |
⊢ ( ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = 0 ∧ ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ) → ( ( 𝑇 ‘ ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) ) ·ih ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) ) = 0 ) |
| 32 |
|
hvsubcl |
⊢ ( ( 𝑦 ∈ ℋ ∧ ( i ·ℎ 𝑧 ) ∈ ℋ ) → ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) ∈ ℋ ) |
| 33 |
23 32
|
sylan2 |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) ∈ ℋ ) |
| 34 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) → ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) ) ) |
| 35 |
|
id |
⊢ ( 𝑥 = ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) → 𝑥 = ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) ) |
| 36 |
34 35
|
oveq12d |
⊢ ( 𝑥 = ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = ( ( 𝑇 ‘ ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) ) ·ih ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) ) ) |
| 37 |
36
|
eqeq1d |
⊢ ( 𝑥 = ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) → ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = 0 ↔ ( ( 𝑇 ‘ ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) ) ·ih ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) ) = 0 ) ) |
| 38 |
37
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = 0 ∧ ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) ∈ ℋ ) → ( ( 𝑇 ‘ ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) ) ·ih ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) ) = 0 ) |
| 39 |
33 38
|
sylan2 |
⊢ ( ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = 0 ∧ ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ) → ( ( 𝑇 ‘ ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) ) ·ih ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) ) = 0 ) |
| 40 |
31 39
|
oveq12d |
⊢ ( ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = 0 ∧ ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ) → ( ( ( 𝑇 ‘ ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) ) ·ih ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) ) − ( ( 𝑇 ‘ ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) ) ·ih ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) ) ) = ( 0 − 0 ) ) |
| 41 |
40 19
|
eqtrdi |
⊢ ( ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = 0 ∧ ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ) → ( ( ( 𝑇 ‘ ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) ) ·ih ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) ) − ( ( 𝑇 ‘ ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) ) ·ih ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) ) ) = 0 ) |
| 42 |
41
|
oveq2d |
⊢ ( ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = 0 ∧ ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ) → ( i · ( ( ( 𝑇 ‘ ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) ) ·ih ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) ) − ( ( 𝑇 ‘ ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) ) ·ih ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) ) ) ) = ( i · 0 ) ) |
| 43 |
|
it0e0 |
⊢ ( i · 0 ) = 0 |
| 44 |
42 43
|
eqtrdi |
⊢ ( ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = 0 ∧ ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ) → ( i · ( ( ( 𝑇 ‘ ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) ) ·ih ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) ) − ( ( 𝑇 ‘ ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) ) ·ih ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) ) ) ) = 0 ) |
| 45 |
20 44
|
oveq12d |
⊢ ( ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = 0 ∧ ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ) → ( ( ( ( 𝑇 ‘ ( 𝑦 +ℎ 𝑧 ) ) ·ih ( 𝑦 +ℎ 𝑧 ) ) − ( ( 𝑇 ‘ ( 𝑦 −ℎ 𝑧 ) ) ·ih ( 𝑦 −ℎ 𝑧 ) ) ) + ( i · ( ( ( 𝑇 ‘ ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) ) ·ih ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) ) − ( ( 𝑇 ‘ ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) ) ·ih ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) ) ) ) ) = ( 0 + 0 ) ) |
| 46 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
| 47 |
45 46
|
eqtrdi |
⊢ ( ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = 0 ∧ ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ) → ( ( ( ( 𝑇 ‘ ( 𝑦 +ℎ 𝑧 ) ) ·ih ( 𝑦 +ℎ 𝑧 ) ) − ( ( 𝑇 ‘ ( 𝑦 −ℎ 𝑧 ) ) ·ih ( 𝑦 −ℎ 𝑧 ) ) ) + ( i · ( ( ( 𝑇 ‘ ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) ) ·ih ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) ) − ( ( 𝑇 ‘ ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) ) ·ih ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) ) ) ) ) = 0 ) |
| 48 |
47
|
oveq1d |
⊢ ( ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = 0 ∧ ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ) → ( ( ( ( ( 𝑇 ‘ ( 𝑦 +ℎ 𝑧 ) ) ·ih ( 𝑦 +ℎ 𝑧 ) ) − ( ( 𝑇 ‘ ( 𝑦 −ℎ 𝑧 ) ) ·ih ( 𝑦 −ℎ 𝑧 ) ) ) + ( i · ( ( ( 𝑇 ‘ ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) ) ·ih ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) ) − ( ( 𝑇 ‘ ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) ) ·ih ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) ) ) ) ) / 4 ) = ( 0 / 4 ) ) |
| 49 |
|
4cn |
⊢ 4 ∈ ℂ |
| 50 |
|
4ne0 |
⊢ 4 ≠ 0 |
| 51 |
49 50
|
div0i |
⊢ ( 0 / 4 ) = 0 |
| 52 |
48 51
|
eqtrdi |
⊢ ( ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = 0 ∧ ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ) → ( ( ( ( ( 𝑇 ‘ ( 𝑦 +ℎ 𝑧 ) ) ·ih ( 𝑦 +ℎ 𝑧 ) ) − ( ( 𝑇 ‘ ( 𝑦 −ℎ 𝑧 ) ) ·ih ( 𝑦 −ℎ 𝑧 ) ) ) + ( i · ( ( ( 𝑇 ‘ ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) ) ·ih ( 𝑦 +ℎ ( i ·ℎ 𝑧 ) ) ) − ( ( 𝑇 ‘ ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) ) ·ih ( 𝑦 −ℎ ( i ·ℎ 𝑧 ) ) ) ) ) ) / 4 ) = 0 ) |
| 53 |
3 52
|
eqtrd |
⊢ ( ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = 0 ∧ ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ) → ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑧 ) = 0 ) |
| 54 |
53
|
ralrimivva |
⊢ ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = 0 → ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑧 ) = 0 ) |
| 55 |
1
|
lnopfi |
⊢ 𝑇 : ℋ ⟶ ℋ |
| 56 |
55
|
ho01i |
⊢ ( ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑧 ) = 0 ↔ 𝑇 = 0hop ) |
| 57 |
54 56
|
sylib |
⊢ ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = 0 → 𝑇 = 0hop ) |
| 58 |
|
fveq1 |
⊢ ( 𝑇 = 0hop → ( 𝑇 ‘ 𝑥 ) = ( 0hop ‘ 𝑥 ) ) |
| 59 |
|
ho0val |
⊢ ( 𝑥 ∈ ℋ → ( 0hop ‘ 𝑥 ) = 0ℎ ) |
| 60 |
58 59
|
sylan9eq |
⊢ ( ( 𝑇 = 0hop ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) = 0ℎ ) |
| 61 |
60
|
oveq1d |
⊢ ( ( 𝑇 = 0hop ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = ( 0ℎ ·ih 𝑥 ) ) |
| 62 |
|
hi01 |
⊢ ( 𝑥 ∈ ℋ → ( 0ℎ ·ih 𝑥 ) = 0 ) |
| 63 |
62
|
adantl |
⊢ ( ( 𝑇 = 0hop ∧ 𝑥 ∈ ℋ ) → ( 0ℎ ·ih 𝑥 ) = 0 ) |
| 64 |
61 63
|
eqtrd |
⊢ ( ( 𝑇 = 0hop ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = 0 ) |
| 65 |
64
|
ralrimiva |
⊢ ( 𝑇 = 0hop → ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = 0 ) |
| 66 |
57 65
|
impbii |
⊢ ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = 0 ↔ 𝑇 = 0hop ) |