| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltrnel.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
ltrnel.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 3 |
|
ltrnel.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 4 |
|
ltrnel.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
1 2 3 4
|
ltrncnvat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴 ) → ( ◡ 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) |
| 6 |
5
|
3adant3r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ◡ 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) |
| 7 |
|
simp3r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ¬ 𝑃 ≤ 𝑊 ) |
| 8 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 9 |
|
simp2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐹 ∈ 𝑇 ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 11 |
10 2
|
atbase |
⊢ ( ( ◡ 𝐹 ‘ 𝑃 ) ∈ 𝐴 → ( ◡ 𝐹 ‘ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) |
| 12 |
6 11
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ◡ 𝐹 ‘ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) |
| 13 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑊 ∈ 𝐻 ) |
| 14 |
10 3
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
| 15 |
13 14
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
| 16 |
10 1 3 4
|
ltrnle |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( ◡ 𝐹 ‘ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ◡ 𝐹 ‘ 𝑃 ) ≤ 𝑊 ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑃 ) ) ≤ ( 𝐹 ‘ 𝑊 ) ) ) |
| 17 |
8 9 12 15 16
|
syl112anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ◡ 𝐹 ‘ 𝑃 ) ≤ 𝑊 ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑃 ) ) ≤ ( 𝐹 ‘ 𝑊 ) ) ) |
| 18 |
10 3 4
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
| 19 |
18
|
3adant3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
| 20 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑃 ∈ 𝐴 ) |
| 21 |
10 2
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 22 |
20 21
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 23 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑃 ) ) = 𝑃 ) |
| 24 |
19 22 23
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑃 ) ) = 𝑃 ) |
| 25 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐾 ∈ HL ) |
| 26 |
25
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐾 ∈ Lat ) |
| 27 |
10 1
|
latref |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → 𝑊 ≤ 𝑊 ) |
| 28 |
26 15 27
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑊 ≤ 𝑊 ) |
| 29 |
10 1 3 4
|
ltrnval1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑊 ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ≤ 𝑊 ) ) → ( 𝐹 ‘ 𝑊 ) = 𝑊 ) |
| 30 |
8 9 15 28 29
|
syl112anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐹 ‘ 𝑊 ) = 𝑊 ) |
| 31 |
24 30
|
breq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑃 ) ) ≤ ( 𝐹 ‘ 𝑊 ) ↔ 𝑃 ≤ 𝑊 ) ) |
| 32 |
17 31
|
bitrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ◡ 𝐹 ‘ 𝑃 ) ≤ 𝑊 ↔ 𝑃 ≤ 𝑊 ) ) |
| 33 |
7 32
|
mtbird |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ¬ ( ◡ 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) |
| 34 |
6 33
|
jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ◡ 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( ◡ 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) ) |