| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdh8a.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
mapdh8a.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
mapdh8a.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 4 |
|
mapdh8a.s |
⊢ − = ( -g ‘ 𝑈 ) |
| 5 |
|
mapdh8a.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 6 |
|
mapdh8a.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 7 |
|
mapdh8a.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
mapdh8a.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
| 9 |
|
mapdh8a.r |
⊢ 𝑅 = ( -g ‘ 𝐶 ) |
| 10 |
|
mapdh8a.q |
⊢ 𝑄 = ( 0g ‘ 𝐶 ) |
| 11 |
|
mapdh8a.j |
⊢ 𝐽 = ( LSpan ‘ 𝐶 ) |
| 12 |
|
mapdh8a.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
| 13 |
|
mapdh8a.i |
⊢ 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd ‘ 𝑥 ) = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) − ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) 𝑅 ℎ ) } ) ) ) ) ) |
| 14 |
|
mapdh8a.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 15 |
|
mapdh8ac.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
| 16 |
|
mapdh8ac.mn |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) ) |
| 17 |
|
mapdh8ac.eg |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 𝐺 ) |
| 18 |
|
mapdh8ac.ee |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) = 𝐸 ) |
| 19 |
|
mapdh8ac.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 20 |
|
mapdh8ac.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 21 |
|
mapdh8ac.z |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 22 |
|
mapdh8ac.t |
⊢ ( 𝜑 → 𝑇 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 23 |
|
mapdh8ac.yn |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑇 } ) ) |
| 24 |
|
mapdh8ad.xy |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 25 |
|
mapdh8ad.xz |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) |
| 26 |
19
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 27 |
20
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 28 |
21
|
eldifad |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
| 29 |
1 2 3 6 14 26 27 28
|
dvh3dim2 |
⊢ ( 𝜑 → ∃ 𝑤 ∈ 𝑉 ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) |
| 30 |
14
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 31 |
15
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) → 𝐹 ∈ 𝐷 ) |
| 32 |
16
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) ) |
| 33 |
17
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 𝐺 ) |
| 34 |
18
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) = 𝐸 ) |
| 35 |
19
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 36 |
20
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 37 |
21
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) → 𝑍 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 38 |
22
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) → 𝑇 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 39 |
23
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑇 } ) ) |
| 40 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑤 〉 ) = ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑤 〉 ) ) |
| 41 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
| 42 |
1 2 14
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 43 |
42
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) → 𝑈 ∈ LMod ) |
| 44 |
3 41 6 42 26 27
|
lspprcl |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 45 |
44
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 46 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) → 𝑤 ∈ 𝑉 ) |
| 47 |
|
simp3l |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) → ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 48 |
5 41 43 45 46 47
|
lssneln0 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) → 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 49 |
1 2 14
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
| 50 |
49
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) → 𝑈 ∈ LVec ) |
| 51 |
26
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) → 𝑋 ∈ 𝑉 ) |
| 52 |
27
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) → 𝑌 ∈ 𝑉 ) |
| 53 |
3 6 50 46 51 52 47
|
lspindpi |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) → ( ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ∧ ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 54 |
53
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) → ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 55 |
54
|
necomd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑤 } ) ) |
| 56 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑤 } ) ) → 𝜑 ) |
| 57 |
56 49
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑤 } ) ) → 𝑈 ∈ LVec ) |
| 58 |
56 19
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑤 } ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 59 |
|
simpl2 |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑤 } ) ) → 𝑤 ∈ 𝑉 ) |
| 60 |
56 27
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑤 } ) ) → 𝑌 ∈ 𝑉 ) |
| 61 |
56 24
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑤 } ) ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 62 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑤 } ) ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑤 } ) ) |
| 63 |
|
prcom |
⊢ { 𝑌 , 𝑤 } = { 𝑤 , 𝑌 } |
| 64 |
63
|
fveq2i |
⊢ ( 𝑁 ‘ { 𝑌 , 𝑤 } ) = ( 𝑁 ‘ { 𝑤 , 𝑌 } ) |
| 65 |
62 64
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑤 } ) ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑤 , 𝑌 } ) ) |
| 66 |
3 5 6 57 58 59 60 61 65
|
lspexch |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑤 } ) ) → 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 67 |
47 66
|
mtand |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑤 } ) ) |
| 68 |
28
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) → 𝑍 ∈ 𝑉 ) |
| 69 |
|
simp3r |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) → ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) |
| 70 |
3 6 50 46 51 68 69
|
lspindpi |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) → ( ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ∧ ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) ) |
| 71 |
70
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) → ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) |
| 72 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑤 , 𝑍 } ) ) → 𝜑 ) |
| 73 |
72 49
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑤 , 𝑍 } ) ) → 𝑈 ∈ LVec ) |
| 74 |
72 19
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑤 , 𝑍 } ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 75 |
|
simpl2 |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑤 , 𝑍 } ) ) → 𝑤 ∈ 𝑉 ) |
| 76 |
72 28
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑤 , 𝑍 } ) ) → 𝑍 ∈ 𝑉 ) |
| 77 |
72 25
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑤 , 𝑍 } ) ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) |
| 78 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑤 , 𝑍 } ) ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑤 , 𝑍 } ) ) |
| 79 |
3 5 6 73 74 75 76 77 78
|
lspexch |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑤 , 𝑍 } ) ) → 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) |
| 80 |
69 79
|
mtand |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑤 , 𝑍 } ) ) |
| 81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 30 31 32 33 34 35 36 37 38 39 40 48 55 67 71 80
|
mapdh8ac |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) → ( 𝐼 ‘ 〈 𝑌 , 𝐺 , 𝑇 〉 ) = ( 𝐼 ‘ 〈 𝑍 , 𝐸 , 𝑇 〉 ) ) |
| 82 |
81
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑤 ∈ 𝑉 ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) → ( 𝐼 ‘ 〈 𝑌 , 𝐺 , 𝑇 〉 ) = ( 𝐼 ‘ 〈 𝑍 , 𝐸 , 𝑇 〉 ) ) ) |
| 83 |
29 82
|
mpd |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑌 , 𝐺 , 𝑇 〉 ) = ( 𝐼 ‘ 〈 𝑍 , 𝐸 , 𝑇 〉 ) ) |