| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdindp1.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | mapdindp1.p | ⊢  +   =  ( +g ‘ 𝑊 ) | 
						
							| 3 |  | mapdindp1.o | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 4 |  | mapdindp1.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑊 ) | 
						
							| 5 |  | mapdindp1.w | ⊢ ( 𝜑  →  𝑊  ∈  LVec ) | 
						
							| 6 |  | mapdindp1.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 7 |  | mapdindp1.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 8 |  | mapdindp1.z | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 9 |  | mapdindp1.W | ⊢ ( 𝜑  →  𝑤  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 10 |  | mapdindp1.e | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 } )  =  ( 𝑁 ‘ { 𝑍 } ) ) | 
						
							| 11 |  | mapdindp1.ne | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 12 |  | mapdindp1.f | ⊢ ( 𝜑  →  ¬  𝑤  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 13 |  | lveclmod | ⊢ ( 𝑊  ∈  LVec  →  𝑊  ∈  LMod ) | 
						
							| 14 | 5 13 | syl | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 15 | 9 | eldifad | ⊢ ( 𝜑  →  𝑤  ∈  𝑉 ) | 
						
							| 16 | 7 | eldifad | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 17 | 1 2 | lmodvacl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑤  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  →  ( 𝑤  +  𝑌 )  ∈  𝑉 ) | 
						
							| 18 | 14 15 16 17 | syl3anc | ⊢ ( 𝜑  →  ( 𝑤  +  𝑌 )  ∈  𝑉 ) | 
						
							| 19 | 6 | eldifad | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 20 | 1 4 5 15 19 16 12 | lspindpi | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑤 } )  ≠  ( 𝑁 ‘ { 𝑋 } )  ∧  ( 𝑁 ‘ { 𝑤 } )  ≠  ( 𝑁 ‘ { 𝑌 } ) ) ) | 
						
							| 21 | 20 | simprd | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑤 } )  ≠  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 22 | 21 | necomd | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 } )  ≠  ( 𝑁 ‘ { 𝑤 } ) ) | 
						
							| 23 | 1 2 3 4 5 16 9 22 | lspindp3 | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 } )  ≠  ( 𝑁 ‘ { ( 𝑌  +  𝑤 ) } ) ) | 
						
							| 24 | 1 2 | lmodcom | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑤  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  →  ( 𝑤  +  𝑌 )  =  ( 𝑌  +  𝑤 ) ) | 
						
							| 25 | 14 15 16 24 | syl3anc | ⊢ ( 𝜑  →  ( 𝑤  +  𝑌 )  =  ( 𝑌  +  𝑤 ) ) | 
						
							| 26 | 25 | sneqd | ⊢ ( 𝜑  →  { ( 𝑤  +  𝑌 ) }  =  { ( 𝑌  +  𝑤 ) } ) | 
						
							| 27 | 26 | fveq2d | ⊢ ( 𝜑  →  ( 𝑁 ‘ { ( 𝑤  +  𝑌 ) } )  =  ( 𝑁 ‘ { ( 𝑌  +  𝑤 ) } ) ) | 
						
							| 28 | 23 27 | neeqtrrd | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 } )  ≠  ( 𝑁 ‘ { ( 𝑤  +  𝑌 ) } ) ) | 
						
							| 29 | 10 28 | eqnetrrd | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑍 } )  ≠  ( 𝑁 ‘ { ( 𝑤  +  𝑌 ) } ) ) | 
						
							| 30 | 1 3 4 5 6 16 15 11 12 | lspindp1 | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑤 } )  ≠  ( 𝑁 ‘ { 𝑌 } )  ∧  ¬  𝑋  ∈  ( 𝑁 ‘ { 𝑤 ,  𝑌 } ) ) ) | 
						
							| 31 | 30 | simprd | ⊢ ( 𝜑  →  ¬  𝑋  ∈  ( 𝑁 ‘ { 𝑤 ,  𝑌 } ) ) | 
						
							| 32 |  | eqid | ⊢ ( LSSum ‘ 𝑊 )  =  ( LSSum ‘ 𝑊 ) | 
						
							| 33 | 8 | eldifad | ⊢ ( 𝜑  →  𝑍  ∈  𝑉 ) | 
						
							| 34 | 1 4 32 14 33 18 | lsmpr | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑍 ,  ( 𝑤  +  𝑌 ) } )  =  ( ( 𝑁 ‘ { 𝑍 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑤  +  𝑌 ) } ) ) ) | 
						
							| 35 | 1 2 | lmodcom | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑌  ∈  𝑉  ∧  𝑤  ∈  𝑉 )  →  ( 𝑌  +  𝑤 )  =  ( 𝑤  +  𝑌 ) ) | 
						
							| 36 | 14 16 15 35 | syl3anc | ⊢ ( 𝜑  →  ( 𝑌  +  𝑤 )  =  ( 𝑤  +  𝑌 ) ) | 
						
							| 37 | 36 | preq2d | ⊢ ( 𝜑  →  { 𝑌 ,  ( 𝑌  +  𝑤 ) }  =  { 𝑌 ,  ( 𝑤  +  𝑌 ) } ) | 
						
							| 38 | 37 | fveq2d | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 ,  ( 𝑌  +  𝑤 ) } )  =  ( 𝑁 ‘ { 𝑌 ,  ( 𝑤  +  𝑌 ) } ) ) | 
						
							| 39 | 1 2 4 14 16 15 | lspprabs | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 ,  ( 𝑌  +  𝑤 ) } )  =  ( 𝑁 ‘ { 𝑌 ,  𝑤 } ) ) | 
						
							| 40 | 1 4 32 14 16 18 | lsmpr | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 ,  ( 𝑤  +  𝑌 ) } )  =  ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑤  +  𝑌 ) } ) ) ) | 
						
							| 41 | 38 39 40 | 3eqtr3rd | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑤  +  𝑌 ) } ) )  =  ( 𝑁 ‘ { 𝑌 ,  𝑤 } ) ) | 
						
							| 42 | 10 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑤  +  𝑌 ) } ) )  =  ( ( 𝑁 ‘ { 𝑍 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑤  +  𝑌 ) } ) ) ) | 
						
							| 43 |  | prcom | ⊢ { 𝑌 ,  𝑤 }  =  { 𝑤 ,  𝑌 } | 
						
							| 44 | 43 | fveq2i | ⊢ ( 𝑁 ‘ { 𝑌 ,  𝑤 } )  =  ( 𝑁 ‘ { 𝑤 ,  𝑌 } ) | 
						
							| 45 | 44 | a1i | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 ,  𝑤 } )  =  ( 𝑁 ‘ { 𝑤 ,  𝑌 } ) ) | 
						
							| 46 | 41 42 45 | 3eqtr3d | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑍 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑤  +  𝑌 ) } ) )  =  ( 𝑁 ‘ { 𝑤 ,  𝑌 } ) ) | 
						
							| 47 | 34 46 | eqtrd | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑍 ,  ( 𝑤  +  𝑌 ) } )  =  ( 𝑁 ‘ { 𝑤 ,  𝑌 } ) ) | 
						
							| 48 | 31 47 | neleqtrrd | ⊢ ( 𝜑  →  ¬  𝑋  ∈  ( 𝑁 ‘ { 𝑍 ,  ( 𝑤  +  𝑌 ) } ) ) | 
						
							| 49 | 1 3 4 5 8 18 19 29 48 | lspindp1 | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { ( 𝑤  +  𝑌 ) } )  ∧  ¬  𝑍  ∈  ( 𝑁 ‘ { 𝑋 ,  ( 𝑤  +  𝑌 ) } ) ) ) | 
						
							| 50 | 49 | simprd | ⊢ ( 𝜑  →  ¬  𝑍  ∈  ( 𝑁 ‘ { 𝑋 ,  ( 𝑤  +  𝑌 ) } ) ) |