Step |
Hyp |
Ref |
Expression |
1 |
|
mapdindp1.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
mapdindp1.p |
⊢ + = ( +g ‘ 𝑊 ) |
3 |
|
mapdindp1.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
4 |
|
mapdindp1.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
5 |
|
mapdindp1.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
6 |
|
mapdindp1.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
7 |
|
mapdindp1.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
8 |
|
mapdindp1.z |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑉 ∖ { 0 } ) ) |
9 |
|
mapdindp1.W |
⊢ ( 𝜑 → 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ) |
10 |
|
mapdindp1.e |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑍 } ) ) |
11 |
|
mapdindp1.ne |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
12 |
|
mapdindp1.f |
⊢ ( 𝜑 → ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
13 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
14 |
5 13
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
15 |
9
|
eldifad |
⊢ ( 𝜑 → 𝑤 ∈ 𝑉 ) |
16 |
7
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
17 |
1 2
|
lmodvacl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑤 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑤 + 𝑌 ) ∈ 𝑉 ) |
18 |
14 15 16 17
|
syl3anc |
⊢ ( 𝜑 → ( 𝑤 + 𝑌 ) ∈ 𝑉 ) |
19 |
6
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
20 |
1 4 5 15 19 16 12
|
lspindpi |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ∧ ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) ) |
21 |
20
|
simprd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
22 |
21
|
necomd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑤 } ) ) |
23 |
1 2 3 4 5 16 9 22
|
lspindp3 |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { ( 𝑌 + 𝑤 ) } ) ) |
24 |
1 2
|
lmodcom |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑤 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑤 + 𝑌 ) = ( 𝑌 + 𝑤 ) ) |
25 |
14 15 16 24
|
syl3anc |
⊢ ( 𝜑 → ( 𝑤 + 𝑌 ) = ( 𝑌 + 𝑤 ) ) |
26 |
25
|
sneqd |
⊢ ( 𝜑 → { ( 𝑤 + 𝑌 ) } = { ( 𝑌 + 𝑤 ) } ) |
27 |
26
|
fveq2d |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( 𝑤 + 𝑌 ) } ) = ( 𝑁 ‘ { ( 𝑌 + 𝑤 ) } ) ) |
28 |
23 27
|
neeqtrrd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { ( 𝑤 + 𝑌 ) } ) ) |
29 |
10 28
|
eqnetrrd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ≠ ( 𝑁 ‘ { ( 𝑤 + 𝑌 ) } ) ) |
30 |
1 3 4 5 6 16 15 11 12
|
lspindp1 |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑤 , 𝑌 } ) ) ) |
31 |
30
|
simprd |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑤 , 𝑌 } ) ) |
32 |
|
eqid |
⊢ ( LSSum ‘ 𝑊 ) = ( LSSum ‘ 𝑊 ) |
33 |
8
|
eldifad |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
34 |
1 4 32 14 33 18
|
lsmpr |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑍 , ( 𝑤 + 𝑌 ) } ) = ( ( 𝑁 ‘ { 𝑍 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑤 + 𝑌 ) } ) ) ) |
35 |
1 2
|
lmodcom |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) → ( 𝑌 + 𝑤 ) = ( 𝑤 + 𝑌 ) ) |
36 |
14 16 15 35
|
syl3anc |
⊢ ( 𝜑 → ( 𝑌 + 𝑤 ) = ( 𝑤 + 𝑌 ) ) |
37 |
36
|
preq2d |
⊢ ( 𝜑 → { 𝑌 , ( 𝑌 + 𝑤 ) } = { 𝑌 , ( 𝑤 + 𝑌 ) } ) |
38 |
37
|
fveq2d |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 , ( 𝑌 + 𝑤 ) } ) = ( 𝑁 ‘ { 𝑌 , ( 𝑤 + 𝑌 ) } ) ) |
39 |
1 2 4 14 16 15
|
lspprabs |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 , ( 𝑌 + 𝑤 ) } ) = ( 𝑁 ‘ { 𝑌 , 𝑤 } ) ) |
40 |
1 4 32 14 16 18
|
lsmpr |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 , ( 𝑤 + 𝑌 ) } ) = ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑤 + 𝑌 ) } ) ) ) |
41 |
38 39 40
|
3eqtr3rd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑤 + 𝑌 ) } ) ) = ( 𝑁 ‘ { 𝑌 , 𝑤 } ) ) |
42 |
10
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑤 + 𝑌 ) } ) ) = ( ( 𝑁 ‘ { 𝑍 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑤 + 𝑌 ) } ) ) ) |
43 |
|
prcom |
⊢ { 𝑌 , 𝑤 } = { 𝑤 , 𝑌 } |
44 |
43
|
fveq2i |
⊢ ( 𝑁 ‘ { 𝑌 , 𝑤 } ) = ( 𝑁 ‘ { 𝑤 , 𝑌 } ) |
45 |
44
|
a1i |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 , 𝑤 } ) = ( 𝑁 ‘ { 𝑤 , 𝑌 } ) ) |
46 |
41 42 45
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑍 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑤 + 𝑌 ) } ) ) = ( 𝑁 ‘ { 𝑤 , 𝑌 } ) ) |
47 |
34 46
|
eqtrd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑍 , ( 𝑤 + 𝑌 ) } ) = ( 𝑁 ‘ { 𝑤 , 𝑌 } ) ) |
48 |
31 47
|
neleqtrrd |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑍 , ( 𝑤 + 𝑌 ) } ) ) |
49 |
1 3 4 5 8 18 19 29 48
|
lspindp1 |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { ( 𝑤 + 𝑌 ) } ) ∧ ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , ( 𝑤 + 𝑌 ) } ) ) ) |
50 |
49
|
simprd |
⊢ ( 𝜑 → ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , ( 𝑤 + 𝑌 ) } ) ) |