| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mat1rhmval.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | mat1rhmval.a | ⊢ 𝐴  =  ( { 𝐸 }  Mat  𝑅 ) | 
						
							| 3 |  | mat1rhmval.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 4 |  | mat1rhmval.o | ⊢ 𝑂  =  〈 𝐸 ,  𝐸 〉 | 
						
							| 5 |  | mat1rhmval.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝐾  ↦  { 〈 𝑂 ,  𝑥 〉 } ) | 
						
							| 6 | 1 | fvexi | ⊢ 𝐾  ∈  V | 
						
							| 7 |  | opex | ⊢ 〈 𝐸 ,  𝐸 〉  ∈  V | 
						
							| 8 | 4 7 | eqeltri | ⊢ 𝑂  ∈  V | 
						
							| 9 | 6 8 | pm3.2i | ⊢ ( 𝐾  ∈  V  ∧  𝑂  ∈  V ) | 
						
							| 10 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 11 | 8 10 | xpsn | ⊢ ( { 𝑂 }  ×  { 𝑥 } )  =  { 〈 𝑂 ,  𝑥 〉 } | 
						
							| 12 | 11 | eqcomi | ⊢ { 〈 𝑂 ,  𝑥 〉 }  =  ( { 𝑂 }  ×  { 𝑥 } ) | 
						
							| 13 | 12 | mpteq2i | ⊢ ( 𝑥  ∈  𝐾  ↦  { 〈 𝑂 ,  𝑥 〉 } )  =  ( 𝑥  ∈  𝐾  ↦  ( { 𝑂 }  ×  { 𝑥 } ) ) | 
						
							| 14 | 13 | mapsnf1o | ⊢ ( ( 𝐾  ∈  V  ∧  𝑂  ∈  V )  →  ( 𝑥  ∈  𝐾  ↦  { 〈 𝑂 ,  𝑥 〉 } ) : 𝐾 –1-1-onto→ ( 𝐾  ↑m  { 𝑂 } ) ) | 
						
							| 15 | 9 14 | mp1i | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  ( 𝑥  ∈  𝐾  ↦  { 〈 𝑂 ,  𝑥 〉 } ) : 𝐾 –1-1-onto→ ( 𝐾  ↑m  { 𝑂 } ) ) | 
						
							| 16 | 5 | a1i | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  𝐹  =  ( 𝑥  ∈  𝐾  ↦  { 〈 𝑂 ,  𝑥 〉 } ) ) | 
						
							| 17 |  | eqidd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  𝐾  =  𝐾 ) | 
						
							| 18 | 4 | sneqi | ⊢ { 𝑂 }  =  { 〈 𝐸 ,  𝐸 〉 } | 
						
							| 19 |  | simpr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  𝐸  ∈  𝑉 ) | 
						
							| 20 |  | xpsng | ⊢ ( ( 𝐸  ∈  𝑉  ∧  𝐸  ∈  𝑉 )  →  ( { 𝐸 }  ×  { 𝐸 } )  =  { 〈 𝐸 ,  𝐸 〉 } ) | 
						
							| 21 | 19 20 | sylancom | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  ( { 𝐸 }  ×  { 𝐸 } )  =  { 〈 𝐸 ,  𝐸 〉 } ) | 
						
							| 22 | 18 21 | eqtr4id | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  { 𝑂 }  =  ( { 𝐸 }  ×  { 𝐸 } ) ) | 
						
							| 23 | 22 | oveq2d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  ( 𝐾  ↑m  { 𝑂 } )  =  ( 𝐾  ↑m  ( { 𝐸 }  ×  { 𝐸 } ) ) ) | 
						
							| 24 |  | snfi | ⊢ { 𝐸 }  ∈  Fin | 
						
							| 25 |  | simpl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  𝑅  ∈  Ring ) | 
						
							| 26 | 2 1 | matbas2 | ⊢ ( ( { 𝐸 }  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝐾  ↑m  ( { 𝐸 }  ×  { 𝐸 } ) )  =  ( Base ‘ 𝐴 ) ) | 
						
							| 27 | 24 25 26 | sylancr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  ( 𝐾  ↑m  ( { 𝐸 }  ×  { 𝐸 } ) )  =  ( Base ‘ 𝐴 ) ) | 
						
							| 28 | 23 27 | eqtrd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  ( 𝐾  ↑m  { 𝑂 } )  =  ( Base ‘ 𝐴 ) ) | 
						
							| 29 | 3 28 | eqtr4id | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  𝐵  =  ( 𝐾  ↑m  { 𝑂 } ) ) | 
						
							| 30 | 16 17 29 | f1oeq123d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  ( 𝐹 : 𝐾 –1-1-onto→ 𝐵  ↔  ( 𝑥  ∈  𝐾  ↦  { 〈 𝑂 ,  𝑥 〉 } ) : 𝐾 –1-1-onto→ ( 𝐾  ↑m  { 𝑂 } ) ) ) | 
						
							| 31 | 15 30 | mpbird | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  𝐹 : 𝐾 –1-1-onto→ 𝐵 ) |