| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdslle1.1 |
⊢ 𝐴 ∈ Cℋ |
| 2 |
|
mdslle1.2 |
⊢ 𝐵 ∈ Cℋ |
| 3 |
|
mdslle1.3 |
⊢ 𝐶 ∈ Cℋ |
| 4 |
|
mdslle1.4 |
⊢ 𝐷 ∈ Cℋ |
| 5 |
3 4 1
|
chlej1i |
⊢ ( 𝐶 ⊆ 𝐷 → ( 𝐶 ∨ℋ 𝐴 ) ⊆ ( 𝐷 ∨ℋ 𝐴 ) ) |
| 6 |
|
ssrin |
⊢ ( ( 𝐶 ∨ℋ 𝐴 ) ⊆ ( 𝐷 ∨ℋ 𝐴 ) → ( ( 𝐶 ∨ℋ 𝐴 ) ∩ 𝐵 ) ⊆ ( ( 𝐷 ∨ℋ 𝐴 ) ∩ 𝐵 ) ) |
| 7 |
|
id |
⊢ ( 𝐴 𝑀ℋ 𝐵 → 𝐴 𝑀ℋ 𝐵 ) |
| 8 |
|
ssin |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ) ↔ ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐶 ∩ 𝐷 ) ) |
| 9 |
8
|
bicomi |
⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐶 ∩ 𝐷 ) ↔ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ) ) |
| 10 |
9
|
simplbi |
⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐶 ∩ 𝐷 ) → ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ) |
| 11 |
3 4 2
|
chlubi |
⊢ ( ( 𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐵 ) ↔ ( 𝐶 ∨ℋ 𝐷 ) ⊆ 𝐵 ) |
| 12 |
11
|
bicomi |
⊢ ( ( 𝐶 ∨ℋ 𝐷 ) ⊆ 𝐵 ↔ ( 𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐵 ) ) |
| 13 |
12
|
simplbi |
⊢ ( ( 𝐶 ∨ℋ 𝐷 ) ⊆ 𝐵 → 𝐶 ⊆ 𝐵 ) |
| 14 |
1 2 3
|
3pm3.2i |
⊢ ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) |
| 15 |
|
mdsl3 |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ ( 𝐴 𝑀ℋ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ) → ( ( 𝐶 ∨ℋ 𝐴 ) ∩ 𝐵 ) = 𝐶 ) |
| 16 |
14 15
|
mpan |
⊢ ( ( 𝐴 𝑀ℋ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) → ( ( 𝐶 ∨ℋ 𝐴 ) ∩ 𝐵 ) = 𝐶 ) |
| 17 |
7 10 13 16
|
syl3an |
⊢ ( ( 𝐴 𝑀ℋ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐶 ∩ 𝐷 ) ∧ ( 𝐶 ∨ℋ 𝐷 ) ⊆ 𝐵 ) → ( ( 𝐶 ∨ℋ 𝐴 ) ∩ 𝐵 ) = 𝐶 ) |
| 18 |
9
|
simprbi |
⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐶 ∩ 𝐷 ) → ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ) |
| 19 |
12
|
simprbi |
⊢ ( ( 𝐶 ∨ℋ 𝐷 ) ⊆ 𝐵 → 𝐷 ⊆ 𝐵 ) |
| 20 |
1 2 4
|
3pm3.2i |
⊢ ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐷 ∈ Cℋ ) |
| 21 |
|
mdsl3 |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐷 ∈ Cℋ ) ∧ ( 𝐴 𝑀ℋ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵 ) ) → ( ( 𝐷 ∨ℋ 𝐴 ) ∩ 𝐵 ) = 𝐷 ) |
| 22 |
20 21
|
mpan |
⊢ ( ( 𝐴 𝑀ℋ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵 ) → ( ( 𝐷 ∨ℋ 𝐴 ) ∩ 𝐵 ) = 𝐷 ) |
| 23 |
7 18 19 22
|
syl3an |
⊢ ( ( 𝐴 𝑀ℋ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐶 ∩ 𝐷 ) ∧ ( 𝐶 ∨ℋ 𝐷 ) ⊆ 𝐵 ) → ( ( 𝐷 ∨ℋ 𝐴 ) ∩ 𝐵 ) = 𝐷 ) |
| 24 |
17 23
|
sseq12d |
⊢ ( ( 𝐴 𝑀ℋ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐶 ∩ 𝐷 ) ∧ ( 𝐶 ∨ℋ 𝐷 ) ⊆ 𝐵 ) → ( ( ( 𝐶 ∨ℋ 𝐴 ) ∩ 𝐵 ) ⊆ ( ( 𝐷 ∨ℋ 𝐴 ) ∩ 𝐵 ) ↔ 𝐶 ⊆ 𝐷 ) ) |
| 25 |
6 24
|
imbitrid |
⊢ ( ( 𝐴 𝑀ℋ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐶 ∩ 𝐷 ) ∧ ( 𝐶 ∨ℋ 𝐷 ) ⊆ 𝐵 ) → ( ( 𝐶 ∨ℋ 𝐴 ) ⊆ ( 𝐷 ∨ℋ 𝐴 ) → 𝐶 ⊆ 𝐷 ) ) |
| 26 |
5 25
|
impbid2 |
⊢ ( ( 𝐴 𝑀ℋ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐶 ∩ 𝐷 ) ∧ ( 𝐶 ∨ℋ 𝐷 ) ⊆ 𝐵 ) → ( 𝐶 ⊆ 𝐷 ↔ ( 𝐶 ∨ℋ 𝐴 ) ⊆ ( 𝐷 ∨ℋ 𝐴 ) ) ) |