Step |
Hyp |
Ref |
Expression |
1 |
|
meaiuninc3.p |
⊢ Ⅎ 𝑛 𝜑 |
2 |
|
meaiuninc3.f |
⊢ Ⅎ 𝑛 𝐸 |
3 |
|
meaiuninc3.m |
⊢ ( 𝜑 → 𝑀 ∈ Meas ) |
4 |
|
meaiuninc3.n |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
5 |
|
meaiuninc3.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑁 ) |
6 |
|
meaiuninc3.e |
⊢ ( 𝜑 → 𝐸 : 𝑍 ⟶ dom 𝑀 ) |
7 |
|
meaiuninc3.i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑛 ) ⊆ ( 𝐸 ‘ ( 𝑛 + 1 ) ) ) |
8 |
|
meaiuninc3.s |
⊢ 𝑆 = ( 𝑛 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
9 |
|
nfv |
⊢ Ⅎ 𝑛 𝑘 ∈ 𝑍 |
10 |
1 9
|
nfan |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) |
11 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑘 |
12 |
2 11
|
nffv |
⊢ Ⅎ 𝑛 ( 𝐸 ‘ 𝑘 ) |
13 |
|
nfcv |
⊢ Ⅎ 𝑛 ( 𝑘 + 1 ) |
14 |
2 13
|
nffv |
⊢ Ⅎ 𝑛 ( 𝐸 ‘ ( 𝑘 + 1 ) ) |
15 |
12 14
|
nfss |
⊢ Ⅎ 𝑛 ( 𝐸 ‘ 𝑘 ) ⊆ ( 𝐸 ‘ ( 𝑘 + 1 ) ) |
16 |
10 15
|
nfim |
⊢ Ⅎ 𝑛 ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑘 ) ⊆ ( 𝐸 ‘ ( 𝑘 + 1 ) ) ) |
17 |
|
eleq1w |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 ∈ 𝑍 ↔ 𝑘 ∈ 𝑍 ) ) |
18 |
17
|
anbi2d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ↔ ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ) ) |
19 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐸 ‘ 𝑛 ) = ( 𝐸 ‘ 𝑘 ) ) |
20 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝑘 → ( 𝐸 ‘ ( 𝑛 + 1 ) ) = ( 𝐸 ‘ ( 𝑘 + 1 ) ) ) |
21 |
19 20
|
sseq12d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐸 ‘ 𝑛 ) ⊆ ( 𝐸 ‘ ( 𝑛 + 1 ) ) ↔ ( 𝐸 ‘ 𝑘 ) ⊆ ( 𝐸 ‘ ( 𝑘 + 1 ) ) ) ) |
22 |
18 21
|
imbi12d |
⊢ ( 𝑛 = 𝑘 → ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑛 ) ⊆ ( 𝐸 ‘ ( 𝑛 + 1 ) ) ) ↔ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑘 ) ⊆ ( 𝐸 ‘ ( 𝑘 + 1 ) ) ) ) ) |
23 |
16 22 7
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑘 ) ⊆ ( 𝐸 ‘ ( 𝑘 + 1 ) ) ) |
24 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑀 |
25 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 𝐸 ‘ 𝑛 ) |
26 |
24 25
|
nffv |
⊢ Ⅎ 𝑘 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) |
27 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑀 |
28 |
27 12
|
nffv |
⊢ Ⅎ 𝑛 ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) ) |
29 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑘 → ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) = ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) ) ) |
30 |
26 28 29
|
cbvmpt |
⊢ ( 𝑛 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) = ( 𝑘 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) ) ) |
31 |
8 30
|
eqtri |
⊢ 𝑆 = ( 𝑘 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) ) ) |
32 |
3 4 5 6 23 31
|
meaiuninc3v |
⊢ ( 𝜑 → 𝑆 ~~>* ( 𝑀 ‘ ∪ 𝑘 ∈ 𝑍 ( 𝐸 ‘ 𝑘 ) ) ) |
33 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐸 ‘ 𝑘 ) = ( 𝐸 ‘ 𝑛 ) ) |
34 |
12 25 33
|
cbviun |
⊢ ∪ 𝑘 ∈ 𝑍 ( 𝐸 ‘ 𝑘 ) = ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) |
35 |
34
|
fveq2i |
⊢ ( 𝑀 ‘ ∪ 𝑘 ∈ 𝑍 ( 𝐸 ‘ 𝑘 ) ) = ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) |
36 |
32 35
|
breqtrdi |
⊢ ( 𝜑 → 𝑆 ~~>* ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) |