Metamath Proof Explorer


Theorem meaiuninc3v

Description: Measures are continuous from below: if E is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is the general case of Proposition 112C (e) of Fremlin1 p. 16 . This theorem generalizes meaiuninc and meaiuninc2 where the sequence is required to be bounded. (Contributed by Glauco Siliprandi, 13-Feb-2022)

Ref Expression
Hypotheses meaiuninc3v.m ( 𝜑𝑀 ∈ Meas )
meaiuninc3v.n ( 𝜑𝑁 ∈ ℤ )
meaiuninc3v.z 𝑍 = ( ℤ𝑁 )
meaiuninc3v.e ( 𝜑𝐸 : 𝑍 ⟶ dom 𝑀 )
meaiuninc3v.i ( ( 𝜑𝑛𝑍 ) → ( 𝐸𝑛 ) ⊆ ( 𝐸 ‘ ( 𝑛 + 1 ) ) )
meaiuninc3v.s 𝑆 = ( 𝑛𝑍 ↦ ( 𝑀 ‘ ( 𝐸𝑛 ) ) )
Assertion meaiuninc3v ( 𝜑𝑆 ~~>* ( 𝑀 𝑛𝑍 ( 𝐸𝑛 ) ) )

Proof

Step Hyp Ref Expression
1 meaiuninc3v.m ( 𝜑𝑀 ∈ Meas )
2 meaiuninc3v.n ( 𝜑𝑁 ∈ ℤ )
3 meaiuninc3v.z 𝑍 = ( ℤ𝑁 )
4 meaiuninc3v.e ( 𝜑𝐸 : 𝑍 ⟶ dom 𝑀 )
5 meaiuninc3v.i ( ( 𝜑𝑛𝑍 ) → ( 𝐸𝑛 ) ⊆ ( 𝐸 ‘ ( 𝑛 + 1 ) ) )
6 meaiuninc3v.s 𝑆 = ( 𝑛𝑍 ↦ ( 𝑀 ‘ ( 𝐸𝑛 ) ) )
7 2 adantr ( ( 𝜑 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑛𝑍 ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 ) → 𝑁 ∈ ℤ )
8 1 adantr ( ( 𝜑𝑛𝑍 ) → 𝑀 ∈ Meas )
9 eqid dom 𝑀 = dom 𝑀
10 4 ffvelrnda ( ( 𝜑𝑛𝑍 ) → ( 𝐸𝑛 ) ∈ dom 𝑀 )
11 8 9 10 meaxrcl ( ( 𝜑𝑛𝑍 ) → ( 𝑀 ‘ ( 𝐸𝑛 ) ) ∈ ℝ* )
12 11 6 fmptd ( 𝜑𝑆 : 𝑍 ⟶ ℝ* )
13 12 adantr ( ( 𝜑 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑛𝑍 ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 ) → 𝑆 : 𝑍 ⟶ ℝ* )
14 nfv 𝑛 𝜑
15 nfcv 𝑛
16 nfra1 𝑛𝑛𝑍 ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥
17 15 16 nfrex 𝑛𝑥 ∈ ℝ ∀ 𝑛𝑍 ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥
18 14 17 nfan 𝑛 ( 𝜑 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑛𝑍 ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 )
19 nfcv 𝑛 𝐸
20 1 adantr ( ( 𝜑 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑛𝑍 ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 ) → 𝑀 ∈ Meas )
21 4 adantr ( ( 𝜑 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑛𝑍 ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 ) → 𝐸 : 𝑍 ⟶ dom 𝑀 )
22 5 adantlr ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑛𝑍 ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 ) ∧ 𝑛𝑍 ) → ( 𝐸𝑛 ) ⊆ ( 𝐸 ‘ ( 𝑛 + 1 ) ) )
23 simpr ( ( 𝜑 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑛𝑍 ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑛𝑍 ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 )
24 18 19 20 7 3 21 22 23 6 meaiunincf ( ( 𝜑 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑛𝑍 ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 ) → 𝑆 ⇝ ( 𝑀 𝑛𝑍 ( 𝐸𝑛 ) ) )
25 7 3 13 24 climxlim2 ( ( 𝜑 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑛𝑍 ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 ) → 𝑆 ~~>* ( 𝑀 𝑛𝑍 ( 𝐸𝑛 ) ) )
26 simpr ( ( 𝜑 ∧ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑛𝑍 ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 ) → ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑛𝑍 ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 )
27 2fveq3 ( 𝑗 = 𝑛 → ( 𝑀 ‘ ( 𝐸𝑗 ) ) = ( 𝑀 ‘ ( 𝐸𝑛 ) ) )
28 27 breq2d ( 𝑗 = 𝑛 → ( 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ↔ 𝑥 < ( 𝑀 ‘ ( 𝐸𝑛 ) ) ) )
29 28 cbvrexvw ( ∃ 𝑗𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ↔ ∃ 𝑛𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸𝑛 ) ) )
30 29 a1i ( ( 𝜑𝑥 ∈ ℝ ) → ( ∃ 𝑗𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ↔ ∃ 𝑛𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸𝑛 ) ) ) )
31 rexr ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* )
32 31 ad2antlr ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑛𝑍 ) → 𝑥 ∈ ℝ* )
33 11 adantlr ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑛𝑍 ) → ( 𝑀 ‘ ( 𝐸𝑛 ) ) ∈ ℝ* )
34 32 33 xrltnled ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑛𝑍 ) → ( 𝑥 < ( 𝑀 ‘ ( 𝐸𝑛 ) ) ↔ ¬ ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 ) )
35 34 rexbidva ( ( 𝜑𝑥 ∈ ℝ ) → ( ∃ 𝑛𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸𝑛 ) ) ↔ ∃ 𝑛𝑍 ¬ ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 ) )
36 30 35 bitrd ( ( 𝜑𝑥 ∈ ℝ ) → ( ∃ 𝑗𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ↔ ∃ 𝑛𝑍 ¬ ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 ) )
37 36 ralbidva ( 𝜑 → ( ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑛𝑍 ¬ ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 ) )
38 rexnal ( ∃ 𝑛𝑍 ¬ ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 ↔ ¬ ∀ 𝑛𝑍 ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 )
39 38 ralbii ( ∀ 𝑥 ∈ ℝ ∃ 𝑛𝑍 ¬ ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 ↔ ∀ 𝑥 ∈ ℝ ¬ ∀ 𝑛𝑍 ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 )
40 ralnex ( ∀ 𝑥 ∈ ℝ ¬ ∀ 𝑛𝑍 ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 ↔ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑛𝑍 ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 )
41 39 40 bitri ( ∀ 𝑥 ∈ ℝ ∃ 𝑛𝑍 ¬ ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 ↔ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑛𝑍 ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 )
42 41 a1i ( 𝜑 → ( ∀ 𝑥 ∈ ℝ ∃ 𝑛𝑍 ¬ ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 ↔ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑛𝑍 ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 ) )
43 37 42 bitrd ( 𝜑 → ( ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ↔ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑛𝑍 ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 ) )
44 43 adantr ( ( 𝜑 ∧ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑛𝑍 ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 ) → ( ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ↔ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑛𝑍 ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 ) )
45 26 44 mpbird ( ( 𝜑 ∧ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑛𝑍 ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 ) → ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) )
46 simpr ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ) → ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) )
47 45 46 syldan ( ( 𝜑 ∧ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑛𝑍 ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 ) → ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) )
48 simp-4r ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗𝑍 ) ∧ 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑗 ) ) → 𝑥 ∈ ℝ )
49 48 31 syl ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗𝑍 ) ∧ 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑗 ) ) → 𝑥 ∈ ℝ* )
50 simp-4l ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗𝑍 ) ∧ 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑗 ) ) → 𝜑 )
51 3 uztrn2 ( ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) → 𝑛𝑍 )
52 51 ad4ant24 ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗𝑍 ) ∧ 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑗 ) ) → 𝑛𝑍 )
53 12 ffvelrnda ( ( 𝜑𝑛𝑍 ) → ( 𝑆𝑛 ) ∈ ℝ* )
54 50 52 53 syl2anc ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗𝑍 ) ∧ 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑗 ) ) → ( 𝑆𝑛 ) ∈ ℝ* )
55 eleq1w ( 𝑛 = 𝑗 → ( 𝑛𝑍𝑗𝑍 ) )
56 55 anbi2d ( 𝑛 = 𝑗 → ( ( 𝜑𝑛𝑍 ) ↔ ( 𝜑𝑗𝑍 ) ) )
57 2fveq3 ( 𝑛 = 𝑗 → ( 𝑀 ‘ ( 𝐸𝑛 ) ) = ( 𝑀 ‘ ( 𝐸𝑗 ) ) )
58 57 eleq1d ( 𝑛 = 𝑗 → ( ( 𝑀 ‘ ( 𝐸𝑛 ) ) ∈ ℝ* ↔ ( 𝑀 ‘ ( 𝐸𝑗 ) ) ∈ ℝ* ) )
59 56 58 imbi12d ( 𝑛 = 𝑗 → ( ( ( 𝜑𝑛𝑍 ) → ( 𝑀 ‘ ( 𝐸𝑛 ) ) ∈ ℝ* ) ↔ ( ( 𝜑𝑗𝑍 ) → ( 𝑀 ‘ ( 𝐸𝑗 ) ) ∈ ℝ* ) ) )
60 59 11 chvarvv ( ( 𝜑𝑗𝑍 ) → ( 𝑀 ‘ ( 𝐸𝑗 ) ) ∈ ℝ* )
61 60 ad5ant13 ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗𝑍 ) ∧ 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑗 ) ) → ( 𝑀 ‘ ( 𝐸𝑗 ) ) ∈ ℝ* )
62 simplr ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗𝑍 ) ∧ 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑗 ) ) → 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) )
63 1 3ad2ant1 ( ( 𝜑𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) → 𝑀 ∈ Meas )
64 4 ffvelrnda ( ( 𝜑𝑗𝑍 ) → ( 𝐸𝑗 ) ∈ dom 𝑀 )
65 64 3adant3 ( ( 𝜑𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) → ( 𝐸𝑗 ) ∈ dom 𝑀 )
66 simp1 ( ( 𝜑𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) → 𝜑 )
67 51 3adant1 ( ( 𝜑𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) → 𝑛𝑍 )
68 66 67 10 syl2anc ( ( 𝜑𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) → ( 𝐸𝑛 ) ∈ dom 𝑀 )
69 simp3 ( ( 𝜑𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) → 𝑛 ∈ ( ℤ𝑗 ) )
70 simpll ( ( ( 𝜑𝑗𝑍 ) ∧ 𝑘 ∈ ( 𝑗 ..^ 𝑛 ) ) → 𝜑 )
71 3 uzssd3 ( 𝑗𝑍 → ( ℤ𝑗 ) ⊆ 𝑍 )
72 71 adantr ( ( 𝑗𝑍𝑘 ∈ ( 𝑗 ..^ 𝑛 ) ) → ( ℤ𝑗 ) ⊆ 𝑍 )
73 elfzouz ( 𝑘 ∈ ( 𝑗 ..^ 𝑛 ) → 𝑘 ∈ ( ℤ𝑗 ) )
74 73 adantl ( ( 𝑗𝑍𝑘 ∈ ( 𝑗 ..^ 𝑛 ) ) → 𝑘 ∈ ( ℤ𝑗 ) )
75 72 74 sseldd ( ( 𝑗𝑍𝑘 ∈ ( 𝑗 ..^ 𝑛 ) ) → 𝑘𝑍 )
76 75 adantll ( ( ( 𝜑𝑗𝑍 ) ∧ 𝑘 ∈ ( 𝑗 ..^ 𝑛 ) ) → 𝑘𝑍 )
77 eleq1w ( 𝑛 = 𝑘 → ( 𝑛𝑍𝑘𝑍 ) )
78 77 anbi2d ( 𝑛 = 𝑘 → ( ( 𝜑𝑛𝑍 ) ↔ ( 𝜑𝑘𝑍 ) ) )
79 fveq2 ( 𝑛 = 𝑘 → ( 𝐸𝑛 ) = ( 𝐸𝑘 ) )
80 fvoveq1 ( 𝑛 = 𝑘 → ( 𝐸 ‘ ( 𝑛 + 1 ) ) = ( 𝐸 ‘ ( 𝑘 + 1 ) ) )
81 79 80 sseq12d ( 𝑛 = 𝑘 → ( ( 𝐸𝑛 ) ⊆ ( 𝐸 ‘ ( 𝑛 + 1 ) ) ↔ ( 𝐸𝑘 ) ⊆ ( 𝐸 ‘ ( 𝑘 + 1 ) ) ) )
82 78 81 imbi12d ( 𝑛 = 𝑘 → ( ( ( 𝜑𝑛𝑍 ) → ( 𝐸𝑛 ) ⊆ ( 𝐸 ‘ ( 𝑛 + 1 ) ) ) ↔ ( ( 𝜑𝑘𝑍 ) → ( 𝐸𝑘 ) ⊆ ( 𝐸 ‘ ( 𝑘 + 1 ) ) ) ) )
83 82 5 chvarvv ( ( 𝜑𝑘𝑍 ) → ( 𝐸𝑘 ) ⊆ ( 𝐸 ‘ ( 𝑘 + 1 ) ) )
84 70 76 83 syl2anc ( ( ( 𝜑𝑗𝑍 ) ∧ 𝑘 ∈ ( 𝑗 ..^ 𝑛 ) ) → ( 𝐸𝑘 ) ⊆ ( 𝐸 ‘ ( 𝑘 + 1 ) ) )
85 84 3adantl3 ( ( ( 𝜑𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) ∧ 𝑘 ∈ ( 𝑗 ..^ 𝑛 ) ) → ( 𝐸𝑘 ) ⊆ ( 𝐸 ‘ ( 𝑘 + 1 ) ) )
86 69 85 ssinc ( ( 𝜑𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) → ( 𝐸𝑗 ) ⊆ ( 𝐸𝑛 ) )
87 63 9 65 68 86 meassle ( ( 𝜑𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) → ( 𝑀 ‘ ( 𝐸𝑗 ) ) ≤ ( 𝑀 ‘ ( 𝐸𝑛 ) ) )
88 fvexd ( ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) → ( 𝑀 ‘ ( 𝐸𝑛 ) ) ∈ V )
89 6 fvmpt2 ( ( 𝑛𝑍 ∧ ( 𝑀 ‘ ( 𝐸𝑛 ) ) ∈ V ) → ( 𝑆𝑛 ) = ( 𝑀 ‘ ( 𝐸𝑛 ) ) )
90 51 88 89 syl2anc ( ( 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) → ( 𝑆𝑛 ) = ( 𝑀 ‘ ( 𝐸𝑛 ) ) )
91 90 3adant1 ( ( 𝜑𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) → ( 𝑆𝑛 ) = ( 𝑀 ‘ ( 𝐸𝑛 ) ) )
92 87 91 breqtrrd ( ( 𝜑𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) ) → ( 𝑀 ‘ ( 𝐸𝑗 ) ) ≤ ( 𝑆𝑛 ) )
93 92 ad5ant135 ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗𝑍 ) ∧ 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑗 ) ) → ( 𝑀 ‘ ( 𝐸𝑗 ) ) ≤ ( 𝑆𝑛 ) )
94 49 61 54 62 93 xrltletrd ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗𝑍 ) ∧ 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑗 ) ) → 𝑥 < ( 𝑆𝑛 ) )
95 49 54 94 xrltled ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗𝑍 ) ∧ 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑗 ) ) → 𝑥 ≤ ( 𝑆𝑛 ) )
96 95 ralrimiva ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗𝑍 ) ∧ 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ) → ∀ 𝑛 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝑆𝑛 ) )
97 96 ex ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗𝑍 ) → ( 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) → ∀ 𝑛 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝑆𝑛 ) ) )
98 97 reximdva ( ( 𝜑𝑥 ∈ ℝ ) → ( ∃ 𝑗𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) → ∃ 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝑆𝑛 ) ) )
99 98 ralimdva ( 𝜑 → ( ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) → ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝑆𝑛 ) ) )
100 99 imp ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ) → ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝑆𝑛 ) )
101 nfmpt1 𝑛 ( 𝑛𝑍 ↦ ( 𝑀 ‘ ( 𝐸𝑛 ) ) )
102 6 101 nfcxfr 𝑛 𝑆
103 102 2 3 12 xlimpnf ( 𝜑 → ( 𝑆 ~~>* +∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝑆𝑛 ) ) )
104 103 adantr ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ) → ( 𝑆 ~~>* +∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑛 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝑆𝑛 ) ) )
105 100 104 mpbird ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ) → 𝑆 ~~>* +∞ )
106 nfv 𝑥 𝜑
107 nfra1 𝑥𝑥 ∈ ℝ ∃ 𝑗𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) )
108 106 107 nfan 𝑥 ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) )
109 rspa ( ( ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ∧ 𝑥 ∈ ℝ ) → ∃ 𝑗𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) )
110 109 adantll ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ) ∧ 𝑥 ∈ ℝ ) → ∃ 𝑗𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) )
111 nfv 𝑗 𝜑
112 nfcv 𝑗
113 nfre1 𝑗𝑗𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) )
114 112 113 nfralw 𝑗𝑥 ∈ ℝ ∃ 𝑗𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) )
115 111 114 nfan 𝑗 ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) )
116 nfv 𝑗 𝑥 ∈ ℝ
117 115 116 nfan 𝑗 ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ) ∧ 𝑥 ∈ ℝ )
118 nfv 𝑗 𝑥 ≤ ( 𝑀 𝑛𝑍 ( 𝐸𝑛 ) )
119 31 ad3antlr ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗𝑍 ) ∧ 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ) → 𝑥 ∈ ℝ* )
120 1 9 dmmeasal ( 𝜑 → dom 𝑀 ∈ SAlg )
121 3 uzct 𝑍 ≼ ω
122 121 a1i ( 𝜑𝑍 ≼ ω )
123 120 122 10 saliuncl ( 𝜑 𝑛𝑍 ( 𝐸𝑛 ) ∈ dom 𝑀 )
124 1 9 123 meaxrcl ( 𝜑 → ( 𝑀 𝑛𝑍 ( 𝐸𝑛 ) ) ∈ ℝ* )
125 124 ad3antrrr ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗𝑍 ) ∧ 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ) → ( 𝑀 𝑛𝑍 ( 𝐸𝑛 ) ) ∈ ℝ* )
126 60 ad4ant13 ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗𝑍 ) ∧ 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ) → ( 𝑀 ‘ ( 𝐸𝑗 ) ) ∈ ℝ* )
127 simpr ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗𝑍 ) ∧ 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ) → 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) )
128 1 adantr ( ( 𝜑𝑗𝑍 ) → 𝑀 ∈ Meas )
129 123 adantr ( ( 𝜑𝑗𝑍 ) → 𝑛𝑍 ( 𝐸𝑛 ) ∈ dom 𝑀 )
130 fveq2 ( 𝑛 = 𝑗 → ( 𝐸𝑛 ) = ( 𝐸𝑗 ) )
131 130 ssiun2s ( 𝑗𝑍 → ( 𝐸𝑗 ) ⊆ 𝑛𝑍 ( 𝐸𝑛 ) )
132 131 adantl ( ( 𝜑𝑗𝑍 ) → ( 𝐸𝑗 ) ⊆ 𝑛𝑍 ( 𝐸𝑛 ) )
133 128 9 64 129 132 meassle ( ( 𝜑𝑗𝑍 ) → ( 𝑀 ‘ ( 𝐸𝑗 ) ) ≤ ( 𝑀 𝑛𝑍 ( 𝐸𝑛 ) ) )
134 133 ad4ant13 ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗𝑍 ) ∧ 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ) → ( 𝑀 ‘ ( 𝐸𝑗 ) ) ≤ ( 𝑀 𝑛𝑍 ( 𝐸𝑛 ) ) )
135 119 126 125 127 134 xrltletrd ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗𝑍 ) ∧ 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ) → 𝑥 < ( 𝑀 𝑛𝑍 ( 𝐸𝑛 ) ) )
136 119 125 135 xrltled ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗𝑍 ) ∧ 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ) → 𝑥 ≤ ( 𝑀 𝑛𝑍 ( 𝐸𝑛 ) ) )
137 136 exp31 ( ( 𝜑𝑥 ∈ ℝ ) → ( 𝑗𝑍 → ( 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) → 𝑥 ≤ ( 𝑀 𝑛𝑍 ( 𝐸𝑛 ) ) ) ) )
138 137 adantlr ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑗𝑍 → ( 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) → 𝑥 ≤ ( 𝑀 𝑛𝑍 ( 𝐸𝑛 ) ) ) ) )
139 117 118 138 rexlimd ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ) ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑗𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) → 𝑥 ≤ ( 𝑀 𝑛𝑍 ( 𝐸𝑛 ) ) ) )
140 110 139 mpd ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ≤ ( 𝑀 𝑛𝑍 ( 𝐸𝑛 ) ) )
141 108 140 ralrimia ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ) → ∀ 𝑥 ∈ ℝ 𝑥 ≤ ( 𝑀 𝑛𝑍 ( 𝐸𝑛 ) ) )
142 xrpnf ( ( 𝑀 𝑛𝑍 ( 𝐸𝑛 ) ) ∈ ℝ* → ( ( 𝑀 𝑛𝑍 ( 𝐸𝑛 ) ) = +∞ ↔ ∀ 𝑥 ∈ ℝ 𝑥 ≤ ( 𝑀 𝑛𝑍 ( 𝐸𝑛 ) ) ) )
143 124 142 syl ( 𝜑 → ( ( 𝑀 𝑛𝑍 ( 𝐸𝑛 ) ) = +∞ ↔ ∀ 𝑥 ∈ ℝ 𝑥 ≤ ( 𝑀 𝑛𝑍 ( 𝐸𝑛 ) ) ) )
144 143 adantr ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ) → ( ( 𝑀 𝑛𝑍 ( 𝐸𝑛 ) ) = +∞ ↔ ∀ 𝑥 ∈ ℝ 𝑥 ≤ ( 𝑀 𝑛𝑍 ( 𝐸𝑛 ) ) ) )
145 141 144 mpbird ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ) → ( 𝑀 𝑛𝑍 ( 𝐸𝑛 ) ) = +∞ )
146 105 145 breqtrrd ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸𝑗 ) ) ) → 𝑆 ~~>* ( 𝑀 𝑛𝑍 ( 𝐸𝑛 ) ) )
147 47 146 syldan ( ( 𝜑 ∧ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑛𝑍 ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 ) → 𝑆 ~~>* ( 𝑀 𝑛𝑍 ( 𝐸𝑛 ) ) )
148 25 147 pm2.61dan ( 𝜑𝑆 ~~>* ( 𝑀 𝑛𝑍 ( 𝐸𝑛 ) ) )