| Step | Hyp | Ref | Expression | 
						
							| 1 |  | meaiuninc3v.m | ⊢ ( 𝜑  →  𝑀  ∈  Meas ) | 
						
							| 2 |  | meaiuninc3v.n | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 3 |  | meaiuninc3v.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑁 ) | 
						
							| 4 |  | meaiuninc3v.e | ⊢ ( 𝜑  →  𝐸 : 𝑍 ⟶ dom  𝑀 ) | 
						
							| 5 |  | meaiuninc3v.i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐸 ‘ 𝑛 )  ⊆  ( 𝐸 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 6 |  | meaiuninc3v.s | ⊢ 𝑆  =  ( 𝑛  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 7 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 )  →  𝑁  ∈  ℤ ) | 
						
							| 8 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  𝑀  ∈  Meas ) | 
						
							| 9 |  | eqid | ⊢ dom  𝑀  =  dom  𝑀 | 
						
							| 10 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐸 ‘ 𝑛 )  ∈  dom  𝑀 ) | 
						
							| 11 | 8 9 10 | meaxrcl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ* ) | 
						
							| 12 | 11 6 | fmptd | ⊢ ( 𝜑  →  𝑆 : 𝑍 ⟶ ℝ* ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝜑  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 )  →  𝑆 : 𝑍 ⟶ ℝ* ) | 
						
							| 14 |  | nfv | ⊢ Ⅎ 𝑛 𝜑 | 
						
							| 15 |  | nfcv | ⊢ Ⅎ 𝑛 ℝ | 
						
							| 16 |  | nfra1 | ⊢ Ⅎ 𝑛 ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 | 
						
							| 17 | 15 16 | nfrexw | ⊢ Ⅎ 𝑛 ∃ 𝑥  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 | 
						
							| 18 | 14 17 | nfan | ⊢ Ⅎ 𝑛 ( 𝜑  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 ) | 
						
							| 19 |  | nfcv | ⊢ Ⅎ 𝑛 𝐸 | 
						
							| 20 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 )  →  𝑀  ∈  Meas ) | 
						
							| 21 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 )  →  𝐸 : 𝑍 ⟶ dom  𝑀 ) | 
						
							| 22 | 5 | adantlr | ⊢ ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 )  ∧  𝑛  ∈  𝑍 )  →  ( 𝐸 ‘ 𝑛 )  ⊆  ( 𝐸 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 23 |  | simpr | ⊢ ( ( 𝜑  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 ) | 
						
							| 24 | 18 19 20 7 3 21 22 23 6 | meaiunincf | ⊢ ( ( 𝜑  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 )  →  𝑆  ⇝  ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 25 | 7 3 13 24 | climxlim2 | ⊢ ( ( 𝜑  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 )  →  𝑆 ~~>* ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 26 |  | simpr | ⊢ ( ( 𝜑  ∧  ¬  ∃ 𝑥  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 )  →  ¬  ∃ 𝑥  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 ) | 
						
							| 27 |  | 2fveq3 | ⊢ ( 𝑗  =  𝑛  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) )  =  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 28 | 27 | breq2d | ⊢ ( 𝑗  =  𝑛  →  ( 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) )  ↔  𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) | 
						
							| 29 | 28 | cbvrexvw | ⊢ ( ∃ 𝑗  ∈  𝑍 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) )  ↔  ∃ 𝑛  ∈  𝑍 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 30 | 29 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ∃ 𝑗  ∈  𝑍 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) )  ↔  ∃ 𝑛  ∈  𝑍 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) | 
						
							| 31 |  | rexr | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  ∈  ℝ* ) | 
						
							| 32 | 31 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  ℝ* ) | 
						
							| 33 | 11 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑛  ∈  𝑍 )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ* ) | 
						
							| 34 | 32 33 | xrltnled | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑛  ∈  𝑍 )  →  ( 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ↔  ¬  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 ) ) | 
						
							| 35 | 34 | rexbidva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ∃ 𝑛  ∈  𝑍 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ↔  ∃ 𝑛  ∈  𝑍 ¬  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 ) ) | 
						
							| 36 | 30 35 | bitrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ∃ 𝑗  ∈  𝑍 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) )  ↔  ∃ 𝑛  ∈  𝑍 ¬  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 ) ) | 
						
							| 37 | 36 | ralbidva | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) )  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑛  ∈  𝑍 ¬  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 ) ) | 
						
							| 38 |  | rexnal | ⊢ ( ∃ 𝑛  ∈  𝑍 ¬  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥  ↔  ¬  ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 ) | 
						
							| 39 | 38 | ralbii | ⊢ ( ∀ 𝑥  ∈  ℝ ∃ 𝑛  ∈  𝑍 ¬  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥  ↔  ∀ 𝑥  ∈  ℝ ¬  ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 ) | 
						
							| 40 |  | ralnex | ⊢ ( ∀ 𝑥  ∈  ℝ ¬  ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥  ↔  ¬  ∃ 𝑥  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 ) | 
						
							| 41 | 39 40 | bitri | ⊢ ( ∀ 𝑥  ∈  ℝ ∃ 𝑛  ∈  𝑍 ¬  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥  ↔  ¬  ∃ 𝑥  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 ) | 
						
							| 42 | 41 | a1i | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ℝ ∃ 𝑛  ∈  𝑍 ¬  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥  ↔  ¬  ∃ 𝑥  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 ) ) | 
						
							| 43 | 37 42 | bitrd | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) )  ↔  ¬  ∃ 𝑥  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 ) ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ∃ 𝑥  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 )  →  ( ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) )  ↔  ¬  ∃ 𝑥  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 ) ) | 
						
							| 45 | 26 44 | mpbird | ⊢ ( ( 𝜑  ∧  ¬  ∃ 𝑥  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 )  →  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) | 
						
							| 46 |  | simpr | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) )  →  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) | 
						
							| 47 | 45 46 | syldan | ⊢ ( ( 𝜑  ∧  ¬  ∃ 𝑥  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 )  →  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) | 
						
							| 48 |  | simp-4r | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 49 | 48 31 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑥  ∈  ℝ* ) | 
						
							| 50 |  | simp-4l | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝜑 ) | 
						
							| 51 | 3 | uztrn2 | ⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑛  ∈  𝑍 ) | 
						
							| 52 | 51 | ad4ant24 | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑛  ∈  𝑍 ) | 
						
							| 53 | 12 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑆 ‘ 𝑛 )  ∈  ℝ* ) | 
						
							| 54 | 50 52 53 | syl2anc | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝑆 ‘ 𝑛 )  ∈  ℝ* ) | 
						
							| 55 |  | eleq1w | ⊢ ( 𝑛  =  𝑗  →  ( 𝑛  ∈  𝑍  ↔  𝑗  ∈  𝑍 ) ) | 
						
							| 56 | 55 | anbi2d | ⊢ ( 𝑛  =  𝑗  →  ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ↔  ( 𝜑  ∧  𝑗  ∈  𝑍 ) ) ) | 
						
							| 57 |  | 2fveq3 | ⊢ ( 𝑛  =  𝑗  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  =  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) | 
						
							| 58 | 57 | eleq1d | ⊢ ( 𝑛  =  𝑗  →  ( ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ*  ↔  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) )  ∈  ℝ* ) ) | 
						
							| 59 | 56 58 | imbi12d | ⊢ ( 𝑛  =  𝑗  →  ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ* )  ↔  ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) )  ∈  ℝ* ) ) ) | 
						
							| 60 | 59 11 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) )  ∈  ℝ* ) | 
						
							| 61 | 60 | ad5ant13 | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) )  ∈  ℝ* ) | 
						
							| 62 |  | simplr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) | 
						
							| 63 | 1 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑀  ∈  Meas ) | 
						
							| 64 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐸 ‘ 𝑗 )  ∈  dom  𝑀 ) | 
						
							| 65 | 64 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝐸 ‘ 𝑗 )  ∈  dom  𝑀 ) | 
						
							| 66 |  | simp1 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝜑 ) | 
						
							| 67 | 51 | 3adant1 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑛  ∈  𝑍 ) | 
						
							| 68 | 66 67 10 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝐸 ‘ 𝑛 )  ∈  dom  𝑀 ) | 
						
							| 69 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 70 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( 𝑗 ..^ 𝑛 ) )  →  𝜑 ) | 
						
							| 71 | 3 | uzssd3 | ⊢ ( 𝑗  ∈  𝑍  →  ( ℤ≥ ‘ 𝑗 )  ⊆  𝑍 ) | 
						
							| 72 | 71 | adantr | ⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( 𝑗 ..^ 𝑛 ) )  →  ( ℤ≥ ‘ 𝑗 )  ⊆  𝑍 ) | 
						
							| 73 |  | elfzouz | ⊢ ( 𝑘  ∈  ( 𝑗 ..^ 𝑛 )  →  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 74 | 73 | adantl | ⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( 𝑗 ..^ 𝑛 ) )  →  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 75 | 72 74 | sseldd | ⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( 𝑗 ..^ 𝑛 ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 76 | 75 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( 𝑗 ..^ 𝑛 ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 77 |  | eleq1w | ⊢ ( 𝑛  =  𝑘  →  ( 𝑛  ∈  𝑍  ↔  𝑘  ∈  𝑍 ) ) | 
						
							| 78 | 77 | anbi2d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ↔  ( 𝜑  ∧  𝑘  ∈  𝑍 ) ) ) | 
						
							| 79 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝐸 ‘ 𝑛 )  =  ( 𝐸 ‘ 𝑘 ) ) | 
						
							| 80 |  | fvoveq1 | ⊢ ( 𝑛  =  𝑘  →  ( 𝐸 ‘ ( 𝑛  +  1 ) )  =  ( 𝐸 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 81 | 79 80 | sseq12d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝐸 ‘ 𝑛 )  ⊆  ( 𝐸 ‘ ( 𝑛  +  1 ) )  ↔  ( 𝐸 ‘ 𝑘 )  ⊆  ( 𝐸 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 82 | 78 81 | imbi12d | ⊢ ( 𝑛  =  𝑘  →  ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐸 ‘ 𝑛 )  ⊆  ( 𝐸 ‘ ( 𝑛  +  1 ) ) )  ↔  ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐸 ‘ 𝑘 )  ⊆  ( 𝐸 ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 83 | 82 5 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐸 ‘ 𝑘 )  ⊆  ( 𝐸 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 84 | 70 76 83 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( 𝑗 ..^ 𝑛 ) )  →  ( 𝐸 ‘ 𝑘 )  ⊆  ( 𝐸 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 85 | 84 | 3adantl3 | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  ∧  𝑘  ∈  ( 𝑗 ..^ 𝑛 ) )  →  ( 𝐸 ‘ 𝑘 )  ⊆  ( 𝐸 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 86 | 69 85 | ssinc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝐸 ‘ 𝑗 )  ⊆  ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 87 | 63 9 65 68 86 | meassle | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) )  ≤  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 88 |  | fvexd | ⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  V ) | 
						
							| 89 | 6 | fvmpt2 | ⊢ ( ( 𝑛  ∈  𝑍  ∧  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  V )  →  ( 𝑆 ‘ 𝑛 )  =  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 90 | 51 88 89 | syl2anc | ⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝑆 ‘ 𝑛 )  =  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 91 | 90 | 3adant1 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝑆 ‘ 𝑛 )  =  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 92 | 87 91 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) )  ≤  ( 𝑆 ‘ 𝑛 ) ) | 
						
							| 93 | 92 | ad5ant135 | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) )  ≤  ( 𝑆 ‘ 𝑛 ) ) | 
						
							| 94 | 49 61 54 62 93 | xrltletrd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑥  <  ( 𝑆 ‘ 𝑛 ) ) | 
						
							| 95 | 49 54 94 | xrltled | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑥  ≤  ( 𝑆 ‘ 𝑛 ) ) | 
						
							| 96 | 95 | ralrimiva | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) )  →  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) 𝑥  ≤  ( 𝑆 ‘ 𝑛 ) ) | 
						
							| 97 | 96 | ex | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  →  ( 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) )  →  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) 𝑥  ≤  ( 𝑆 ‘ 𝑛 ) ) ) | 
						
							| 98 | 97 | reximdva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ∃ 𝑗  ∈  𝑍 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) 𝑥  ≤  ( 𝑆 ‘ 𝑛 ) ) ) | 
						
							| 99 | 98 | ralimdva | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) )  →  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) 𝑥  ≤  ( 𝑆 ‘ 𝑛 ) ) ) | 
						
							| 100 | 99 | imp | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) )  →  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) 𝑥  ≤  ( 𝑆 ‘ 𝑛 ) ) | 
						
							| 101 |  | nfmpt1 | ⊢ Ⅎ 𝑛 ( 𝑛  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 102 | 6 101 | nfcxfr | ⊢ Ⅎ 𝑛 𝑆 | 
						
							| 103 | 102 2 3 12 | xlimpnf | ⊢ ( 𝜑  →  ( 𝑆 ~~>* +∞  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) 𝑥  ≤  ( 𝑆 ‘ 𝑛 ) ) ) | 
						
							| 104 | 103 | adantr | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) )  →  ( 𝑆 ~~>* +∞  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) 𝑥  ≤  ( 𝑆 ‘ 𝑛 ) ) ) | 
						
							| 105 | 100 104 | mpbird | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) )  →  𝑆 ~~>* +∞ ) | 
						
							| 106 |  | nfv | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 107 |  | nfra1 | ⊢ Ⅎ 𝑥 ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) | 
						
							| 108 | 106 107 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) | 
						
							| 109 |  | rspa | ⊢ ( ( ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) )  ∧  𝑥  ∈  ℝ )  →  ∃ 𝑗  ∈  𝑍 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) | 
						
							| 110 | 109 | adantll | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) )  ∧  𝑥  ∈  ℝ )  →  ∃ 𝑗  ∈  𝑍 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) | 
						
							| 111 |  | nfv | ⊢ Ⅎ 𝑗 𝜑 | 
						
							| 112 |  | nfcv | ⊢ Ⅎ 𝑗 ℝ | 
						
							| 113 |  | nfre1 | ⊢ Ⅎ 𝑗 ∃ 𝑗  ∈  𝑍 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) | 
						
							| 114 | 112 113 | nfralw | ⊢ Ⅎ 𝑗 ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) | 
						
							| 115 | 111 114 | nfan | ⊢ Ⅎ 𝑗 ( 𝜑  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) | 
						
							| 116 |  | nfv | ⊢ Ⅎ 𝑗 𝑥  ∈  ℝ | 
						
							| 117 | 115 116 | nfan | ⊢ Ⅎ 𝑗 ( ( 𝜑  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) )  ∧  𝑥  ∈  ℝ ) | 
						
							| 118 |  | nfv | ⊢ Ⅎ 𝑗 𝑥  ≤  ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 119 | 31 | ad3antlr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) )  →  𝑥  ∈  ℝ* ) | 
						
							| 120 | 1 9 | dmmeasal | ⊢ ( 𝜑  →  dom  𝑀  ∈  SAlg ) | 
						
							| 121 | 3 | uzct | ⊢ 𝑍  ≼  ω | 
						
							| 122 | 121 | a1i | ⊢ ( 𝜑  →  𝑍  ≼  ω ) | 
						
							| 123 | 120 122 10 | saliuncl | ⊢ ( 𝜑  →  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  ∈  dom  𝑀 ) | 
						
							| 124 | 1 9 123 | meaxrcl | ⊢ ( 𝜑  →  ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ* ) | 
						
							| 125 | 124 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) )  →  ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ* ) | 
						
							| 126 | 60 | ad4ant13 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) )  ∈  ℝ* ) | 
						
							| 127 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) )  →  𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) | 
						
							| 128 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  𝑀  ∈  Meas ) | 
						
							| 129 | 123 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  ∈  dom  𝑀 ) | 
						
							| 130 |  | fveq2 | ⊢ ( 𝑛  =  𝑗  →  ( 𝐸 ‘ 𝑛 )  =  ( 𝐸 ‘ 𝑗 ) ) | 
						
							| 131 | 130 | ssiun2s | ⊢ ( 𝑗  ∈  𝑍  →  ( 𝐸 ‘ 𝑗 )  ⊆  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 132 | 131 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐸 ‘ 𝑗 )  ⊆  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 133 | 128 9 64 129 132 | meassle | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) )  ≤  ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 134 | 133 | ad4ant13 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) )  ≤  ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 135 | 119 126 125 127 134 | xrltletrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) )  →  𝑥  <  ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 136 | 119 125 135 | xrltled | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) )  →  𝑥  ≤  ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 137 | 136 | exp31 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑗  ∈  𝑍  →  ( 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) )  →  𝑥  ≤  ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ) | 
						
							| 138 | 137 | adantlr | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) )  ∧  𝑥  ∈  ℝ )  →  ( 𝑗  ∈  𝑍  →  ( 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) )  →  𝑥  ≤  ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ) | 
						
							| 139 | 117 118 138 | rexlimd | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) )  ∧  𝑥  ∈  ℝ )  →  ( ∃ 𝑗  ∈  𝑍 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) )  →  𝑥  ≤  ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) | 
						
							| 140 | 110 139 | mpd | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) )  ∧  𝑥  ∈  ℝ )  →  𝑥  ≤  ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 141 | 108 140 | ralrimia | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) )  →  ∀ 𝑥  ∈  ℝ 𝑥  ≤  ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 142 |  | xrpnf | ⊢ ( ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ*  →  ( ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) )  =  +∞  ↔  ∀ 𝑥  ∈  ℝ 𝑥  ≤  ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) | 
						
							| 143 | 124 142 | syl | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) )  =  +∞  ↔  ∀ 𝑥  ∈  ℝ 𝑥  ≤  ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) | 
						
							| 144 | 143 | adantr | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) )  →  ( ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) )  =  +∞  ↔  ∀ 𝑥  ∈  ℝ 𝑥  ≤  ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) | 
						
							| 145 | 141 144 | mpbird | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) )  →  ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) )  =  +∞ ) | 
						
							| 146 | 105 145 | breqtrrd | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 𝑥  <  ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) )  →  𝑆 ~~>* ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 147 | 47 146 | syldan | ⊢ ( ( 𝜑  ∧  ¬  ∃ 𝑥  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 )  →  𝑆 ~~>* ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 148 | 25 147 | pm2.61dan | ⊢ ( 𝜑  →  𝑆 ~~>* ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) |