Step |
Hyp |
Ref |
Expression |
1 |
|
meaiuninc3v.m |
⊢ ( 𝜑 → 𝑀 ∈ Meas ) |
2 |
|
meaiuninc3v.n |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
3 |
|
meaiuninc3v.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑁 ) |
4 |
|
meaiuninc3v.e |
⊢ ( 𝜑 → 𝐸 : 𝑍 ⟶ dom 𝑀 ) |
5 |
|
meaiuninc3v.i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑛 ) ⊆ ( 𝐸 ‘ ( 𝑛 + 1 ) ) ) |
6 |
|
meaiuninc3v.s |
⊢ 𝑆 = ( 𝑛 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
7 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) → 𝑁 ∈ ℤ ) |
8 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑀 ∈ Meas ) |
9 |
|
eqid |
⊢ dom 𝑀 = dom 𝑀 |
10 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑛 ) ∈ dom 𝑀 ) |
11 |
8 9 10
|
meaxrcl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ* ) |
12 |
11 6
|
fmptd |
⊢ ( 𝜑 → 𝑆 : 𝑍 ⟶ ℝ* ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) → 𝑆 : 𝑍 ⟶ ℝ* ) |
14 |
|
nfv |
⊢ Ⅎ 𝑛 𝜑 |
15 |
|
nfcv |
⊢ Ⅎ 𝑛 ℝ |
16 |
|
nfra1 |
⊢ Ⅎ 𝑛 ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 |
17 |
15 16
|
nfrex |
⊢ Ⅎ 𝑛 ∃ 𝑥 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 |
18 |
14 17
|
nfan |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) |
19 |
|
nfcv |
⊢ Ⅎ 𝑛 𝐸 |
20 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) → 𝑀 ∈ Meas ) |
21 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) → 𝐸 : 𝑍 ⟶ dom 𝑀 ) |
22 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑛 ) ⊆ ( 𝐸 ‘ ( 𝑛 + 1 ) ) ) |
23 |
|
simpr |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) |
24 |
18 19 20 7 3 21 22 23 6
|
meaiunincf |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) → 𝑆 ⇝ ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) |
25 |
7 3 13 24
|
climxlim2 |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) → 𝑆 ~~>* ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) |
26 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) → ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) |
27 |
|
2fveq3 |
⊢ ( 𝑗 = 𝑛 → ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) = ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
28 |
27
|
breq2d |
⊢ ( 𝑗 = 𝑛 → ( 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ↔ 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) |
29 |
28
|
cbvrexvw |
⊢ ( ∃ 𝑗 ∈ 𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ↔ ∃ 𝑛 ∈ 𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
30 |
29
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑗 ∈ 𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ↔ ∃ 𝑛 ∈ 𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) |
31 |
|
rexr |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) |
32 |
31
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ ℝ* ) |
33 |
11
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ* ) |
34 |
32 33
|
xrltnled |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ↔ ¬ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) ) |
35 |
34
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑛 ∈ 𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ↔ ∃ 𝑛 ∈ 𝑍 ¬ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) ) |
36 |
30 35
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑗 ∈ 𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ↔ ∃ 𝑛 ∈ 𝑍 ¬ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) ) |
37 |
36
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑛 ∈ 𝑍 ¬ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) ) |
38 |
|
rexnal |
⊢ ( ∃ 𝑛 ∈ 𝑍 ¬ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ↔ ¬ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) |
39 |
38
|
ralbii |
⊢ ( ∀ 𝑥 ∈ ℝ ∃ 𝑛 ∈ 𝑍 ¬ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ↔ ∀ 𝑥 ∈ ℝ ¬ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) |
40 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ ℝ ¬ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ↔ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) |
41 |
39 40
|
bitri |
⊢ ( ∀ 𝑥 ∈ ℝ ∃ 𝑛 ∈ 𝑍 ¬ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ↔ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) |
42 |
41
|
a1i |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ ∃ 𝑛 ∈ 𝑍 ¬ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ↔ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) ) |
43 |
37 42
|
bitrd |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ↔ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) ) |
44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) → ( ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ↔ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) ) |
45 |
26 44
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) → ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) |
46 |
|
simpr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) → ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) |
47 |
45 46
|
syldan |
⊢ ( ( 𝜑 ∧ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) → ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) |
48 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑥 ∈ ℝ ) |
49 |
48 31
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑥 ∈ ℝ* ) |
50 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝜑 ) |
51 |
3
|
uztrn2 |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑛 ∈ 𝑍 ) |
52 |
51
|
ad4ant24 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑛 ∈ 𝑍 ) |
53 |
12
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑆 ‘ 𝑛 ) ∈ ℝ* ) |
54 |
50 52 53
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑆 ‘ 𝑛 ) ∈ ℝ* ) |
55 |
|
eleq1w |
⊢ ( 𝑛 = 𝑗 → ( 𝑛 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍 ) ) |
56 |
55
|
anbi2d |
⊢ ( 𝑛 = 𝑗 → ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ↔ ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ) ) |
57 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑗 → ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) = ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) |
58 |
57
|
eleq1d |
⊢ ( 𝑛 = 𝑗 → ( ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ* ↔ ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ∈ ℝ* ) ) |
59 |
56 58
|
imbi12d |
⊢ ( 𝑛 = 𝑗 → ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ* ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ∈ ℝ* ) ) ) |
60 |
59 11
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ∈ ℝ* ) |
61 |
60
|
ad5ant13 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ∈ ℝ* ) |
62 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) |
63 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑀 ∈ Meas ) |
64 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑗 ) ∈ dom 𝑀 ) |
65 |
64
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐸 ‘ 𝑗 ) ∈ dom 𝑀 ) |
66 |
|
simp1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝜑 ) |
67 |
51
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑛 ∈ 𝑍 ) |
68 |
66 67 10
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐸 ‘ 𝑛 ) ∈ dom 𝑀 ) |
69 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
70 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑗 ..^ 𝑛 ) ) → 𝜑 ) |
71 |
3
|
uzssd3 |
⊢ ( 𝑗 ∈ 𝑍 → ( ℤ≥ ‘ 𝑗 ) ⊆ 𝑍 ) |
72 |
71
|
adantr |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( 𝑗 ..^ 𝑛 ) ) → ( ℤ≥ ‘ 𝑗 ) ⊆ 𝑍 ) |
73 |
|
elfzouz |
⊢ ( 𝑘 ∈ ( 𝑗 ..^ 𝑛 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
74 |
73
|
adantl |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( 𝑗 ..^ 𝑛 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
75 |
72 74
|
sseldd |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( 𝑗 ..^ 𝑛 ) ) → 𝑘 ∈ 𝑍 ) |
76 |
75
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑗 ..^ 𝑛 ) ) → 𝑘 ∈ 𝑍 ) |
77 |
|
eleq1w |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 ∈ 𝑍 ↔ 𝑘 ∈ 𝑍 ) ) |
78 |
77
|
anbi2d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ↔ ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ) ) |
79 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐸 ‘ 𝑛 ) = ( 𝐸 ‘ 𝑘 ) ) |
80 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝑘 → ( 𝐸 ‘ ( 𝑛 + 1 ) ) = ( 𝐸 ‘ ( 𝑘 + 1 ) ) ) |
81 |
79 80
|
sseq12d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐸 ‘ 𝑛 ) ⊆ ( 𝐸 ‘ ( 𝑛 + 1 ) ) ↔ ( 𝐸 ‘ 𝑘 ) ⊆ ( 𝐸 ‘ ( 𝑘 + 1 ) ) ) ) |
82 |
78 81
|
imbi12d |
⊢ ( 𝑛 = 𝑘 → ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑛 ) ⊆ ( 𝐸 ‘ ( 𝑛 + 1 ) ) ) ↔ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑘 ) ⊆ ( 𝐸 ‘ ( 𝑘 + 1 ) ) ) ) ) |
83 |
82 5
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑘 ) ⊆ ( 𝐸 ‘ ( 𝑘 + 1 ) ) ) |
84 |
70 76 83
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑗 ..^ 𝑛 ) ) → ( 𝐸 ‘ 𝑘 ) ⊆ ( 𝐸 ‘ ( 𝑘 + 1 ) ) ) |
85 |
84
|
3adantl3 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑘 ∈ ( 𝑗 ..^ 𝑛 ) ) → ( 𝐸 ‘ 𝑘 ) ⊆ ( 𝐸 ‘ ( 𝑘 + 1 ) ) ) |
86 |
69 85
|
ssinc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐸 ‘ 𝑗 ) ⊆ ( 𝐸 ‘ 𝑛 ) ) |
87 |
63 9 65 68 86
|
meassle |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ≤ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
88 |
|
fvexd |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ V ) |
89 |
6
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ V ) → ( 𝑆 ‘ 𝑛 ) = ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
90 |
51 88 89
|
syl2anc |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑆 ‘ 𝑛 ) = ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
91 |
90
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑆 ‘ 𝑛 ) = ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
92 |
87 91
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ≤ ( 𝑆 ‘ 𝑛 ) ) |
93 |
92
|
ad5ant135 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ≤ ( 𝑆 ‘ 𝑛 ) ) |
94 |
49 61 54 62 93
|
xrltletrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑥 < ( 𝑆 ‘ 𝑛 ) ) |
95 |
49 54 94
|
xrltled |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑥 ≤ ( 𝑆 ‘ 𝑛 ) ) |
96 |
95
|
ralrimiva |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝑆 ‘ 𝑛 ) ) |
97 |
96
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) → ( 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝑆 ‘ 𝑛 ) ) ) |
98 |
97
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑗 ∈ 𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝑆 ‘ 𝑛 ) ) ) |
99 |
98
|
ralimdva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) → ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝑆 ‘ 𝑛 ) ) ) |
100 |
99
|
imp |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) → ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝑆 ‘ 𝑛 ) ) |
101 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
102 |
6 101
|
nfcxfr |
⊢ Ⅎ 𝑛 𝑆 |
103 |
102 2 3 12
|
xlimpnf |
⊢ ( 𝜑 → ( 𝑆 ~~>* +∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝑆 ‘ 𝑛 ) ) ) |
104 |
103
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) → ( 𝑆 ~~>* +∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝑆 ‘ 𝑛 ) ) ) |
105 |
100 104
|
mpbird |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) → 𝑆 ~~>* +∞ ) |
106 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
107 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) |
108 |
106 107
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) |
109 |
|
rspa |
⊢ ( ( ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ∧ 𝑥 ∈ ℝ ) → ∃ 𝑗 ∈ 𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) |
110 |
109
|
adantll |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) ∧ 𝑥 ∈ ℝ ) → ∃ 𝑗 ∈ 𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) |
111 |
|
nfv |
⊢ Ⅎ 𝑗 𝜑 |
112 |
|
nfcv |
⊢ Ⅎ 𝑗 ℝ |
113 |
|
nfre1 |
⊢ Ⅎ 𝑗 ∃ 𝑗 ∈ 𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) |
114 |
112 113
|
nfralw |
⊢ Ⅎ 𝑗 ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) |
115 |
111 114
|
nfan |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) |
116 |
|
nfv |
⊢ Ⅎ 𝑗 𝑥 ∈ ℝ |
117 |
115 116
|
nfan |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) ∧ 𝑥 ∈ ℝ ) |
118 |
|
nfv |
⊢ Ⅎ 𝑗 𝑥 ≤ ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) |
119 |
31
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) → 𝑥 ∈ ℝ* ) |
120 |
1 9
|
dmmeasal |
⊢ ( 𝜑 → dom 𝑀 ∈ SAlg ) |
121 |
3
|
uzct |
⊢ 𝑍 ≼ ω |
122 |
121
|
a1i |
⊢ ( 𝜑 → 𝑍 ≼ ω ) |
123 |
120 122 10
|
saliuncl |
⊢ ( 𝜑 → ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ∈ dom 𝑀 ) |
124 |
1 9 123
|
meaxrcl |
⊢ ( 𝜑 → ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ* ) |
125 |
124
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) → ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ* ) |
126 |
60
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ∈ ℝ* ) |
127 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) → 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) |
128 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑀 ∈ Meas ) |
129 |
123
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ∈ dom 𝑀 ) |
130 |
|
fveq2 |
⊢ ( 𝑛 = 𝑗 → ( 𝐸 ‘ 𝑛 ) = ( 𝐸 ‘ 𝑗 ) ) |
131 |
130
|
ssiun2s |
⊢ ( 𝑗 ∈ 𝑍 → ( 𝐸 ‘ 𝑗 ) ⊆ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) |
132 |
131
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑗 ) ⊆ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) |
133 |
128 9 64 129 132
|
meassle |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ≤ ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) |
134 |
133
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ≤ ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) |
135 |
119 126 125 127 134
|
xrltletrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) → 𝑥 < ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) |
136 |
119 125 135
|
xrltled |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) → 𝑥 ≤ ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) |
137 |
136
|
exp31 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑗 ∈ 𝑍 → ( 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) → 𝑥 ≤ ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
138 |
137
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑗 ∈ 𝑍 → ( 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) → 𝑥 ≤ ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
139 |
117 118 138
|
rexlimd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑗 ∈ 𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) → 𝑥 ≤ ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) |
140 |
110 139
|
mpd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ≤ ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) |
141 |
108 140
|
ralrimia |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) → ∀ 𝑥 ∈ ℝ 𝑥 ≤ ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) |
142 |
|
xrpnf |
⊢ ( ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ* → ( ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) = +∞ ↔ ∀ 𝑥 ∈ ℝ 𝑥 ≤ ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) |
143 |
124 142
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) = +∞ ↔ ∀ 𝑥 ∈ ℝ 𝑥 ≤ ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) |
144 |
143
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) → ( ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) = +∞ ↔ ∀ 𝑥 ∈ ℝ 𝑥 ≤ ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) |
145 |
141 144
|
mpbird |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) → ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) = +∞ ) |
146 |
105 145
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 𝑥 < ( 𝑀 ‘ ( 𝐸 ‘ 𝑗 ) ) ) → 𝑆 ~~>* ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) |
147 |
47 146
|
syldan |
⊢ ( ( 𝜑 ∧ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) → 𝑆 ~~>* ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) |
148 |
25 147
|
pm2.61dan |
⊢ ( 𝜑 → 𝑆 ~~>* ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) |