Step |
Hyp |
Ref |
Expression |
1 |
|
meaiunincf.p |
⊢ Ⅎ 𝑛 𝜑 |
2 |
|
meaiunincf.f |
⊢ Ⅎ 𝑛 𝐸 |
3 |
|
meaiunincf.m |
⊢ ( 𝜑 → 𝑀 ∈ Meas ) |
4 |
|
meaiunincf.n |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
5 |
|
meaiunincf.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑁 ) |
6 |
|
meaiunincf.e |
⊢ ( 𝜑 → 𝐸 : 𝑍 ⟶ dom 𝑀 ) |
7 |
|
meaiunincf.i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑛 ) ⊆ ( 𝐸 ‘ ( 𝑛 + 1 ) ) ) |
8 |
|
meaiunincf.x |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) |
9 |
|
meaiunincf.s |
⊢ 𝑆 = ( 𝑛 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
10 |
|
nfv |
⊢ Ⅎ 𝑛 𝑘 ∈ 𝑍 |
11 |
1 10
|
nfan |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) |
12 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑘 |
13 |
2 12
|
nffv |
⊢ Ⅎ 𝑛 ( 𝐸 ‘ 𝑘 ) |
14 |
|
nfcv |
⊢ Ⅎ 𝑛 ( 𝑘 + 1 ) |
15 |
2 14
|
nffv |
⊢ Ⅎ 𝑛 ( 𝐸 ‘ ( 𝑘 + 1 ) ) |
16 |
13 15
|
nfss |
⊢ Ⅎ 𝑛 ( 𝐸 ‘ 𝑘 ) ⊆ ( 𝐸 ‘ ( 𝑘 + 1 ) ) |
17 |
11 16
|
nfim |
⊢ Ⅎ 𝑛 ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑘 ) ⊆ ( 𝐸 ‘ ( 𝑘 + 1 ) ) ) |
18 |
|
eleq1w |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 ∈ 𝑍 ↔ 𝑘 ∈ 𝑍 ) ) |
19 |
18
|
anbi2d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ↔ ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ) ) |
20 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐸 ‘ 𝑛 ) = ( 𝐸 ‘ 𝑘 ) ) |
21 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝑘 → ( 𝐸 ‘ ( 𝑛 + 1 ) ) = ( 𝐸 ‘ ( 𝑘 + 1 ) ) ) |
22 |
20 21
|
sseq12d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐸 ‘ 𝑛 ) ⊆ ( 𝐸 ‘ ( 𝑛 + 1 ) ) ↔ ( 𝐸 ‘ 𝑘 ) ⊆ ( 𝐸 ‘ ( 𝑘 + 1 ) ) ) ) |
23 |
19 22
|
imbi12d |
⊢ ( 𝑛 = 𝑘 → ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑛 ) ⊆ ( 𝐸 ‘ ( 𝑛 + 1 ) ) ) ↔ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑘 ) ⊆ ( 𝐸 ‘ ( 𝑘 + 1 ) ) ) ) ) |
24 |
17 23 7
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑘 ) ⊆ ( 𝐸 ‘ ( 𝑘 + 1 ) ) ) |
25 |
|
breq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ↔ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑦 ) ) |
26 |
25
|
ralbidv |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ↔ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑦 ) ) |
27 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑦 |
28 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑀 |
29 |
28 13
|
nffv |
⊢ Ⅎ 𝑛 ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) ) |
30 |
|
nfcv |
⊢ Ⅎ 𝑛 ≤ |
31 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑦 |
32 |
29 30 31
|
nfbr |
⊢ Ⅎ 𝑛 ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) ) ≤ 𝑦 |
33 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑘 → ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) = ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) ) ) |
34 |
33
|
breq1d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑦 ↔ ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) ) ≤ 𝑦 ) ) |
35 |
27 32 34
|
cbvralw |
⊢ ( ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑦 ↔ ∀ 𝑘 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) ) ≤ 𝑦 ) |
36 |
35
|
a1i |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑦 ↔ ∀ 𝑘 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) ) ≤ 𝑦 ) ) |
37 |
26 36
|
bitrd |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ↔ ∀ 𝑘 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) ) ≤ 𝑦 ) ) |
38 |
37
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) ) ≤ 𝑦 ) |
39 |
8 38
|
sylib |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) ) ≤ 𝑦 ) |
40 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) |
41 |
40 29 33
|
cbvmpt |
⊢ ( 𝑛 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) = ( 𝑘 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) ) ) |
42 |
9 41
|
eqtri |
⊢ 𝑆 = ( 𝑘 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) ) ) |
43 |
3 4 5 6 24 39 42
|
meaiuninc |
⊢ ( 𝜑 → 𝑆 ⇝ ( 𝑀 ‘ ∪ 𝑘 ∈ 𝑍 ( 𝐸 ‘ 𝑘 ) ) ) |
44 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 𝐸 ‘ 𝑛 ) |
45 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐸 ‘ 𝑘 ) = ( 𝐸 ‘ 𝑛 ) ) |
46 |
13 44 45
|
cbviun |
⊢ ∪ 𝑘 ∈ 𝑍 ( 𝐸 ‘ 𝑘 ) = ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) |
47 |
46
|
fveq2i |
⊢ ( 𝑀 ‘ ∪ 𝑘 ∈ 𝑍 ( 𝐸 ‘ 𝑘 ) ) = ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) |
48 |
43 47
|
breqtrdi |
⊢ ( 𝜑 → 𝑆 ⇝ ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) |