| Step | Hyp | Ref | Expression | 
						
							| 1 |  | meaiunincf.p | ⊢ Ⅎ 𝑛 𝜑 | 
						
							| 2 |  | meaiunincf.f | ⊢ Ⅎ 𝑛 𝐸 | 
						
							| 3 |  | meaiunincf.m | ⊢ ( 𝜑  →  𝑀  ∈  Meas ) | 
						
							| 4 |  | meaiunincf.n | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 5 |  | meaiunincf.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑁 ) | 
						
							| 6 |  | meaiunincf.e | ⊢ ( 𝜑  →  𝐸 : 𝑍 ⟶ dom  𝑀 ) | 
						
							| 7 |  | meaiunincf.i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐸 ‘ 𝑛 )  ⊆  ( 𝐸 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 8 |  | meaiunincf.x | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 ) | 
						
							| 9 |  | meaiunincf.s | ⊢ 𝑆  =  ( 𝑛  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 10 |  | nfv | ⊢ Ⅎ 𝑛 𝑘  ∈  𝑍 | 
						
							| 11 | 1 10 | nfan | ⊢ Ⅎ 𝑛 ( 𝜑  ∧  𝑘  ∈  𝑍 ) | 
						
							| 12 |  | nfcv | ⊢ Ⅎ 𝑛 𝑘 | 
						
							| 13 | 2 12 | nffv | ⊢ Ⅎ 𝑛 ( 𝐸 ‘ 𝑘 ) | 
						
							| 14 |  | nfcv | ⊢ Ⅎ 𝑛 ( 𝑘  +  1 ) | 
						
							| 15 | 2 14 | nffv | ⊢ Ⅎ 𝑛 ( 𝐸 ‘ ( 𝑘  +  1 ) ) | 
						
							| 16 | 13 15 | nfss | ⊢ Ⅎ 𝑛 ( 𝐸 ‘ 𝑘 )  ⊆  ( 𝐸 ‘ ( 𝑘  +  1 ) ) | 
						
							| 17 | 11 16 | nfim | ⊢ Ⅎ 𝑛 ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐸 ‘ 𝑘 )  ⊆  ( 𝐸 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 18 |  | eleq1w | ⊢ ( 𝑛  =  𝑘  →  ( 𝑛  ∈  𝑍  ↔  𝑘  ∈  𝑍 ) ) | 
						
							| 19 | 18 | anbi2d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ↔  ( 𝜑  ∧  𝑘  ∈  𝑍 ) ) ) | 
						
							| 20 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝐸 ‘ 𝑛 )  =  ( 𝐸 ‘ 𝑘 ) ) | 
						
							| 21 |  | fvoveq1 | ⊢ ( 𝑛  =  𝑘  →  ( 𝐸 ‘ ( 𝑛  +  1 ) )  =  ( 𝐸 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 22 | 20 21 | sseq12d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝐸 ‘ 𝑛 )  ⊆  ( 𝐸 ‘ ( 𝑛  +  1 ) )  ↔  ( 𝐸 ‘ 𝑘 )  ⊆  ( 𝐸 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 23 | 19 22 | imbi12d | ⊢ ( 𝑛  =  𝑘  →  ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐸 ‘ 𝑛 )  ⊆  ( 𝐸 ‘ ( 𝑛  +  1 ) ) )  ↔  ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐸 ‘ 𝑘 )  ⊆  ( 𝐸 ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 24 | 17 23 7 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐸 ‘ 𝑘 )  ⊆  ( 𝐸 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 25 |  | breq2 | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥  ↔  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑦 ) ) | 
						
							| 26 | 25 | ralbidv | ⊢ ( 𝑥  =  𝑦  →  ( ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥  ↔  ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑦 ) ) | 
						
							| 27 |  | nfv | ⊢ Ⅎ 𝑘 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑦 | 
						
							| 28 |  | nfcv | ⊢ Ⅎ 𝑛 𝑀 | 
						
							| 29 | 28 13 | nffv | ⊢ Ⅎ 𝑛 ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) ) | 
						
							| 30 |  | nfcv | ⊢ Ⅎ 𝑛  ≤ | 
						
							| 31 |  | nfcv | ⊢ Ⅎ 𝑛 𝑦 | 
						
							| 32 | 29 30 31 | nfbr | ⊢ Ⅎ 𝑛 ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) )  ≤  𝑦 | 
						
							| 33 |  | 2fveq3 | ⊢ ( 𝑛  =  𝑘  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  =  ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) ) ) | 
						
							| 34 | 33 | breq1d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑦  ↔  ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) )  ≤  𝑦 ) ) | 
						
							| 35 | 27 32 34 | cbvralw | ⊢ ( ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑦  ↔  ∀ 𝑘  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) )  ≤  𝑦 ) | 
						
							| 36 | 35 | a1i | ⊢ ( 𝑥  =  𝑦  →  ( ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑦  ↔  ∀ 𝑘  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) )  ≤  𝑦 ) ) | 
						
							| 37 | 26 36 | bitrd | ⊢ ( 𝑥  =  𝑦  →  ( ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥  ↔  ∀ 𝑘  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) )  ≤  𝑦 ) ) | 
						
							| 38 | 37 | cbvrexvw | ⊢ ( ∃ 𝑥  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥  ↔  ∃ 𝑦  ∈  ℝ ∀ 𝑘  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) )  ≤  𝑦 ) | 
						
							| 39 | 8 38 | sylib | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  ℝ ∀ 𝑘  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) )  ≤  𝑦 ) | 
						
							| 40 |  | nfcv | ⊢ Ⅎ 𝑘 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 41 | 40 29 33 | cbvmpt | ⊢ ( 𝑛  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) )  =  ( 𝑘  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) ) ) | 
						
							| 42 | 9 41 | eqtri | ⊢ 𝑆  =  ( 𝑘  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑘 ) ) ) | 
						
							| 43 | 3 4 5 6 24 39 42 | meaiuninc | ⊢ ( 𝜑  →  𝑆  ⇝  ( 𝑀 ‘ ∪  𝑘  ∈  𝑍 ( 𝐸 ‘ 𝑘 ) ) ) | 
						
							| 44 |  | nfcv | ⊢ Ⅎ 𝑘 ( 𝐸 ‘ 𝑛 ) | 
						
							| 45 |  | fveq2 | ⊢ ( 𝑘  =  𝑛  →  ( 𝐸 ‘ 𝑘 )  =  ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 46 | 13 44 45 | cbviun | ⊢ ∪  𝑘  ∈  𝑍 ( 𝐸 ‘ 𝑘 )  =  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) | 
						
							| 47 | 46 | fveq2i | ⊢ ( 𝑀 ‘ ∪  𝑘  ∈  𝑍 ( 𝐸 ‘ 𝑘 ) )  =  ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 48 | 43 47 | breqtrdi | ⊢ ( 𝜑  →  𝑆  ⇝  ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) |