Metamath Proof Explorer


Theorem meaiunincf

Description: Measures are continuous from below (bounded case): if E is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is Proposition 112C (e) of Fremlin1 p. 16. (Contributed by Glauco Siliprandi, 13-Feb-2022)

Ref Expression
Hypotheses meaiunincf.p 𝑛 𝜑
meaiunincf.f 𝑛 𝐸
meaiunincf.m ( 𝜑𝑀 ∈ Meas )
meaiunincf.n ( 𝜑𝑁 ∈ ℤ )
meaiunincf.z 𝑍 = ( ℤ𝑁 )
meaiunincf.e ( 𝜑𝐸 : 𝑍 ⟶ dom 𝑀 )
meaiunincf.i ( ( 𝜑𝑛𝑍 ) → ( 𝐸𝑛 ) ⊆ ( 𝐸 ‘ ( 𝑛 + 1 ) ) )
meaiunincf.x ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑛𝑍 ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 )
meaiunincf.s 𝑆 = ( 𝑛𝑍 ↦ ( 𝑀 ‘ ( 𝐸𝑛 ) ) )
Assertion meaiunincf ( 𝜑𝑆 ⇝ ( 𝑀 𝑛𝑍 ( 𝐸𝑛 ) ) )

Proof

Step Hyp Ref Expression
1 meaiunincf.p 𝑛 𝜑
2 meaiunincf.f 𝑛 𝐸
3 meaiunincf.m ( 𝜑𝑀 ∈ Meas )
4 meaiunincf.n ( 𝜑𝑁 ∈ ℤ )
5 meaiunincf.z 𝑍 = ( ℤ𝑁 )
6 meaiunincf.e ( 𝜑𝐸 : 𝑍 ⟶ dom 𝑀 )
7 meaiunincf.i ( ( 𝜑𝑛𝑍 ) → ( 𝐸𝑛 ) ⊆ ( 𝐸 ‘ ( 𝑛 + 1 ) ) )
8 meaiunincf.x ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑛𝑍 ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 )
9 meaiunincf.s 𝑆 = ( 𝑛𝑍 ↦ ( 𝑀 ‘ ( 𝐸𝑛 ) ) )
10 nfv 𝑛 𝑘𝑍
11 1 10 nfan 𝑛 ( 𝜑𝑘𝑍 )
12 nfcv 𝑛 𝑘
13 2 12 nffv 𝑛 ( 𝐸𝑘 )
14 nfcv 𝑛 ( 𝑘 + 1 )
15 2 14 nffv 𝑛 ( 𝐸 ‘ ( 𝑘 + 1 ) )
16 13 15 nfss 𝑛 ( 𝐸𝑘 ) ⊆ ( 𝐸 ‘ ( 𝑘 + 1 ) )
17 11 16 nfim 𝑛 ( ( 𝜑𝑘𝑍 ) → ( 𝐸𝑘 ) ⊆ ( 𝐸 ‘ ( 𝑘 + 1 ) ) )
18 eleq1w ( 𝑛 = 𝑘 → ( 𝑛𝑍𝑘𝑍 ) )
19 18 anbi2d ( 𝑛 = 𝑘 → ( ( 𝜑𝑛𝑍 ) ↔ ( 𝜑𝑘𝑍 ) ) )
20 fveq2 ( 𝑛 = 𝑘 → ( 𝐸𝑛 ) = ( 𝐸𝑘 ) )
21 fvoveq1 ( 𝑛 = 𝑘 → ( 𝐸 ‘ ( 𝑛 + 1 ) ) = ( 𝐸 ‘ ( 𝑘 + 1 ) ) )
22 20 21 sseq12d ( 𝑛 = 𝑘 → ( ( 𝐸𝑛 ) ⊆ ( 𝐸 ‘ ( 𝑛 + 1 ) ) ↔ ( 𝐸𝑘 ) ⊆ ( 𝐸 ‘ ( 𝑘 + 1 ) ) ) )
23 19 22 imbi12d ( 𝑛 = 𝑘 → ( ( ( 𝜑𝑛𝑍 ) → ( 𝐸𝑛 ) ⊆ ( 𝐸 ‘ ( 𝑛 + 1 ) ) ) ↔ ( ( 𝜑𝑘𝑍 ) → ( 𝐸𝑘 ) ⊆ ( 𝐸 ‘ ( 𝑘 + 1 ) ) ) ) )
24 17 23 7 chvarfv ( ( 𝜑𝑘𝑍 ) → ( 𝐸𝑘 ) ⊆ ( 𝐸 ‘ ( 𝑘 + 1 ) ) )
25 breq2 ( 𝑥 = 𝑦 → ( ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 ↔ ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑦 ) )
26 25 ralbidv ( 𝑥 = 𝑦 → ( ∀ 𝑛𝑍 ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 ↔ ∀ 𝑛𝑍 ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑦 ) )
27 nfv 𝑘 ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑦
28 nfcv 𝑛 𝑀
29 28 13 nffv 𝑛 ( 𝑀 ‘ ( 𝐸𝑘 ) )
30 nfcv 𝑛
31 nfcv 𝑛 𝑦
32 29 30 31 nfbr 𝑛 ( 𝑀 ‘ ( 𝐸𝑘 ) ) ≤ 𝑦
33 2fveq3 ( 𝑛 = 𝑘 → ( 𝑀 ‘ ( 𝐸𝑛 ) ) = ( 𝑀 ‘ ( 𝐸𝑘 ) ) )
34 33 breq1d ( 𝑛 = 𝑘 → ( ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑦 ↔ ( 𝑀 ‘ ( 𝐸𝑘 ) ) ≤ 𝑦 ) )
35 27 32 34 cbvralw ( ∀ 𝑛𝑍 ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑦 ↔ ∀ 𝑘𝑍 ( 𝑀 ‘ ( 𝐸𝑘 ) ) ≤ 𝑦 )
36 35 a1i ( 𝑥 = 𝑦 → ( ∀ 𝑛𝑍 ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑦 ↔ ∀ 𝑘𝑍 ( 𝑀 ‘ ( 𝐸𝑘 ) ) ≤ 𝑦 ) )
37 26 36 bitrd ( 𝑥 = 𝑦 → ( ∀ 𝑛𝑍 ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 ↔ ∀ 𝑘𝑍 ( 𝑀 ‘ ( 𝐸𝑘 ) ) ≤ 𝑦 ) )
38 37 cbvrexvw ( ∃ 𝑥 ∈ ℝ ∀ 𝑛𝑍 ( 𝑀 ‘ ( 𝐸𝑛 ) ) ≤ 𝑥 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑘𝑍 ( 𝑀 ‘ ( 𝐸𝑘 ) ) ≤ 𝑦 )
39 8 38 sylib ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑘𝑍 ( 𝑀 ‘ ( 𝐸𝑘 ) ) ≤ 𝑦 )
40 nfcv 𝑘 ( 𝑀 ‘ ( 𝐸𝑛 ) )
41 40 29 33 cbvmpt ( 𝑛𝑍 ↦ ( 𝑀 ‘ ( 𝐸𝑛 ) ) ) = ( 𝑘𝑍 ↦ ( 𝑀 ‘ ( 𝐸𝑘 ) ) )
42 9 41 eqtri 𝑆 = ( 𝑘𝑍 ↦ ( 𝑀 ‘ ( 𝐸𝑘 ) ) )
43 3 4 5 6 24 39 42 meaiuninc ( 𝜑𝑆 ⇝ ( 𝑀 𝑘𝑍 ( 𝐸𝑘 ) ) )
44 nfcv 𝑘 ( 𝐸𝑛 )
45 fveq2 ( 𝑘 = 𝑛 → ( 𝐸𝑘 ) = ( 𝐸𝑛 ) )
46 13 44 45 cbviun 𝑘𝑍 ( 𝐸𝑘 ) = 𝑛𝑍 ( 𝐸𝑛 )
47 46 fveq2i ( 𝑀 𝑘𝑍 ( 𝐸𝑘 ) ) = ( 𝑀 𝑛𝑍 ( 𝐸𝑛 ) )
48 43 47 breqtrdi ( 𝜑𝑆 ⇝ ( 𝑀 𝑛𝑍 ( 𝐸𝑛 ) ) )