Metamath Proof Explorer


Theorem meaiunincf

Description: Measures are continuous from below (bounded case): if E is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is Proposition 112C (e) of Fremlin1 p. 16. (Contributed by Glauco Siliprandi, 13-Feb-2022)

Ref Expression
Hypotheses meaiunincf.p nφ
meaiunincf.f _nE
meaiunincf.m φMMeas
meaiunincf.n φN
meaiunincf.z Z=N
meaiunincf.e φE:ZdomM
meaiunincf.i φnZEnEn+1
meaiunincf.x φxnZMEnx
meaiunincf.s S=nZMEn
Assertion meaiunincf φSMnZEn

Proof

Step Hyp Ref Expression
1 meaiunincf.p nφ
2 meaiunincf.f _nE
3 meaiunincf.m φMMeas
4 meaiunincf.n φN
5 meaiunincf.z Z=N
6 meaiunincf.e φE:ZdomM
7 meaiunincf.i φnZEnEn+1
8 meaiunincf.x φxnZMEnx
9 meaiunincf.s S=nZMEn
10 nfv nkZ
11 1 10 nfan nφkZ
12 nfcv _nk
13 2 12 nffv _nEk
14 nfcv _nk+1
15 2 14 nffv _nEk+1
16 13 15 nfss nEkEk+1
17 11 16 nfim nφkZEkEk+1
18 eleq1w n=knZkZ
19 18 anbi2d n=kφnZφkZ
20 fveq2 n=kEn=Ek
21 fvoveq1 n=kEn+1=Ek+1
22 20 21 sseq12d n=kEnEn+1EkEk+1
23 19 22 imbi12d n=kφnZEnEn+1φkZEkEk+1
24 17 23 7 chvarfv φkZEkEk+1
25 breq2 x=yMEnxMEny
26 25 ralbidv x=ynZMEnxnZMEny
27 nfv kMEny
28 nfcv _nM
29 28 13 nffv _nMEk
30 nfcv _n
31 nfcv _ny
32 29 30 31 nfbr nMEky
33 2fveq3 n=kMEn=MEk
34 33 breq1d n=kMEnyMEky
35 27 32 34 cbvralw nZMEnykZMEky
36 35 a1i x=ynZMEnykZMEky
37 26 36 bitrd x=ynZMEnxkZMEky
38 37 cbvrexvw xnZMEnxykZMEky
39 8 38 sylib φykZMEky
40 nfcv _kMEn
41 40 29 33 cbvmpt nZMEn=kZMEk
42 9 41 eqtri S=kZMEk
43 3 4 5 6 24 39 42 meaiuninc φSMkZEk
44 nfcv _kEn
45 fveq2 k=nEk=En
46 13 44 45 cbviun kZEk=nZEn
47 46 fveq2i MkZEk=MnZEn
48 43 47 breqtrdi φSMnZEn