Step |
Hyp |
Ref |
Expression |
1 |
|
meaiunincf.p |
|- F/ n ph |
2 |
|
meaiunincf.f |
|- F/_ n E |
3 |
|
meaiunincf.m |
|- ( ph -> M e. Meas ) |
4 |
|
meaiunincf.n |
|- ( ph -> N e. ZZ ) |
5 |
|
meaiunincf.z |
|- Z = ( ZZ>= ` N ) |
6 |
|
meaiunincf.e |
|- ( ph -> E : Z --> dom M ) |
7 |
|
meaiunincf.i |
|- ( ( ph /\ n e. Z ) -> ( E ` n ) C_ ( E ` ( n + 1 ) ) ) |
8 |
|
meaiunincf.x |
|- ( ph -> E. x e. RR A. n e. Z ( M ` ( E ` n ) ) <_ x ) |
9 |
|
meaiunincf.s |
|- S = ( n e. Z |-> ( M ` ( E ` n ) ) ) |
10 |
|
nfv |
|- F/ n k e. Z |
11 |
1 10
|
nfan |
|- F/ n ( ph /\ k e. Z ) |
12 |
|
nfcv |
|- F/_ n k |
13 |
2 12
|
nffv |
|- F/_ n ( E ` k ) |
14 |
|
nfcv |
|- F/_ n ( k + 1 ) |
15 |
2 14
|
nffv |
|- F/_ n ( E ` ( k + 1 ) ) |
16 |
13 15
|
nfss |
|- F/ n ( E ` k ) C_ ( E ` ( k + 1 ) ) |
17 |
11 16
|
nfim |
|- F/ n ( ( ph /\ k e. Z ) -> ( E ` k ) C_ ( E ` ( k + 1 ) ) ) |
18 |
|
eleq1w |
|- ( n = k -> ( n e. Z <-> k e. Z ) ) |
19 |
18
|
anbi2d |
|- ( n = k -> ( ( ph /\ n e. Z ) <-> ( ph /\ k e. Z ) ) ) |
20 |
|
fveq2 |
|- ( n = k -> ( E ` n ) = ( E ` k ) ) |
21 |
|
fvoveq1 |
|- ( n = k -> ( E ` ( n + 1 ) ) = ( E ` ( k + 1 ) ) ) |
22 |
20 21
|
sseq12d |
|- ( n = k -> ( ( E ` n ) C_ ( E ` ( n + 1 ) ) <-> ( E ` k ) C_ ( E ` ( k + 1 ) ) ) ) |
23 |
19 22
|
imbi12d |
|- ( n = k -> ( ( ( ph /\ n e. Z ) -> ( E ` n ) C_ ( E ` ( n + 1 ) ) ) <-> ( ( ph /\ k e. Z ) -> ( E ` k ) C_ ( E ` ( k + 1 ) ) ) ) ) |
24 |
17 23 7
|
chvarfv |
|- ( ( ph /\ k e. Z ) -> ( E ` k ) C_ ( E ` ( k + 1 ) ) ) |
25 |
|
breq2 |
|- ( x = y -> ( ( M ` ( E ` n ) ) <_ x <-> ( M ` ( E ` n ) ) <_ y ) ) |
26 |
25
|
ralbidv |
|- ( x = y -> ( A. n e. Z ( M ` ( E ` n ) ) <_ x <-> A. n e. Z ( M ` ( E ` n ) ) <_ y ) ) |
27 |
|
nfv |
|- F/ k ( M ` ( E ` n ) ) <_ y |
28 |
|
nfcv |
|- F/_ n M |
29 |
28 13
|
nffv |
|- F/_ n ( M ` ( E ` k ) ) |
30 |
|
nfcv |
|- F/_ n <_ |
31 |
|
nfcv |
|- F/_ n y |
32 |
29 30 31
|
nfbr |
|- F/ n ( M ` ( E ` k ) ) <_ y |
33 |
|
2fveq3 |
|- ( n = k -> ( M ` ( E ` n ) ) = ( M ` ( E ` k ) ) ) |
34 |
33
|
breq1d |
|- ( n = k -> ( ( M ` ( E ` n ) ) <_ y <-> ( M ` ( E ` k ) ) <_ y ) ) |
35 |
27 32 34
|
cbvralw |
|- ( A. n e. Z ( M ` ( E ` n ) ) <_ y <-> A. k e. Z ( M ` ( E ` k ) ) <_ y ) |
36 |
35
|
a1i |
|- ( x = y -> ( A. n e. Z ( M ` ( E ` n ) ) <_ y <-> A. k e. Z ( M ` ( E ` k ) ) <_ y ) ) |
37 |
26 36
|
bitrd |
|- ( x = y -> ( A. n e. Z ( M ` ( E ` n ) ) <_ x <-> A. k e. Z ( M ` ( E ` k ) ) <_ y ) ) |
38 |
37
|
cbvrexvw |
|- ( E. x e. RR A. n e. Z ( M ` ( E ` n ) ) <_ x <-> E. y e. RR A. k e. Z ( M ` ( E ` k ) ) <_ y ) |
39 |
8 38
|
sylib |
|- ( ph -> E. y e. RR A. k e. Z ( M ` ( E ` k ) ) <_ y ) |
40 |
|
nfcv |
|- F/_ k ( M ` ( E ` n ) ) |
41 |
40 29 33
|
cbvmpt |
|- ( n e. Z |-> ( M ` ( E ` n ) ) ) = ( k e. Z |-> ( M ` ( E ` k ) ) ) |
42 |
9 41
|
eqtri |
|- S = ( k e. Z |-> ( M ` ( E ` k ) ) ) |
43 |
3 4 5 6 24 39 42
|
meaiuninc |
|- ( ph -> S ~~> ( M ` U_ k e. Z ( E ` k ) ) ) |
44 |
|
nfcv |
|- F/_ k ( E ` n ) |
45 |
|
fveq2 |
|- ( k = n -> ( E ` k ) = ( E ` n ) ) |
46 |
13 44 45
|
cbviun |
|- U_ k e. Z ( E ` k ) = U_ n e. Z ( E ` n ) |
47 |
46
|
fveq2i |
|- ( M ` U_ k e. Z ( E ` k ) ) = ( M ` U_ n e. Z ( E ` n ) ) |
48 |
43 47
|
breqtrdi |
|- ( ph -> S ~~> ( M ` U_ n e. Z ( E ` n ) ) ) |