| Step | Hyp | Ref | Expression | 
						
							| 1 |  | meaiunincf.p |  |-  F/ n ph | 
						
							| 2 |  | meaiunincf.f |  |-  F/_ n E | 
						
							| 3 |  | meaiunincf.m |  |-  ( ph -> M e. Meas ) | 
						
							| 4 |  | meaiunincf.n |  |-  ( ph -> N e. ZZ ) | 
						
							| 5 |  | meaiunincf.z |  |-  Z = ( ZZ>= ` N ) | 
						
							| 6 |  | meaiunincf.e |  |-  ( ph -> E : Z --> dom M ) | 
						
							| 7 |  | meaiunincf.i |  |-  ( ( ph /\ n e. Z ) -> ( E ` n ) C_ ( E ` ( n + 1 ) ) ) | 
						
							| 8 |  | meaiunincf.x |  |-  ( ph -> E. x e. RR A. n e. Z ( M ` ( E ` n ) ) <_ x ) | 
						
							| 9 |  | meaiunincf.s |  |-  S = ( n e. Z |-> ( M ` ( E ` n ) ) ) | 
						
							| 10 |  | nfv |  |-  F/ n k e. Z | 
						
							| 11 | 1 10 | nfan |  |-  F/ n ( ph /\ k e. Z ) | 
						
							| 12 |  | nfcv |  |-  F/_ n k | 
						
							| 13 | 2 12 | nffv |  |-  F/_ n ( E ` k ) | 
						
							| 14 |  | nfcv |  |-  F/_ n ( k + 1 ) | 
						
							| 15 | 2 14 | nffv |  |-  F/_ n ( E ` ( k + 1 ) ) | 
						
							| 16 | 13 15 | nfss |  |-  F/ n ( E ` k ) C_ ( E ` ( k + 1 ) ) | 
						
							| 17 | 11 16 | nfim |  |-  F/ n ( ( ph /\ k e. Z ) -> ( E ` k ) C_ ( E ` ( k + 1 ) ) ) | 
						
							| 18 |  | eleq1w |  |-  ( n = k -> ( n e. Z <-> k e. Z ) ) | 
						
							| 19 | 18 | anbi2d |  |-  ( n = k -> ( ( ph /\ n e. Z ) <-> ( ph /\ k e. Z ) ) ) | 
						
							| 20 |  | fveq2 |  |-  ( n = k -> ( E ` n ) = ( E ` k ) ) | 
						
							| 21 |  | fvoveq1 |  |-  ( n = k -> ( E ` ( n + 1 ) ) = ( E ` ( k + 1 ) ) ) | 
						
							| 22 | 20 21 | sseq12d |  |-  ( n = k -> ( ( E ` n ) C_ ( E ` ( n + 1 ) ) <-> ( E ` k ) C_ ( E ` ( k + 1 ) ) ) ) | 
						
							| 23 | 19 22 | imbi12d |  |-  ( n = k -> ( ( ( ph /\ n e. Z ) -> ( E ` n ) C_ ( E ` ( n + 1 ) ) ) <-> ( ( ph /\ k e. Z ) -> ( E ` k ) C_ ( E ` ( k + 1 ) ) ) ) ) | 
						
							| 24 | 17 23 7 | chvarfv |  |-  ( ( ph /\ k e. Z ) -> ( E ` k ) C_ ( E ` ( k + 1 ) ) ) | 
						
							| 25 |  | breq2 |  |-  ( x = y -> ( ( M ` ( E ` n ) ) <_ x <-> ( M ` ( E ` n ) ) <_ y ) ) | 
						
							| 26 | 25 | ralbidv |  |-  ( x = y -> ( A. n e. Z ( M ` ( E ` n ) ) <_ x <-> A. n e. Z ( M ` ( E ` n ) ) <_ y ) ) | 
						
							| 27 |  | nfv |  |-  F/ k ( M ` ( E ` n ) ) <_ y | 
						
							| 28 |  | nfcv |  |-  F/_ n M | 
						
							| 29 | 28 13 | nffv |  |-  F/_ n ( M ` ( E ` k ) ) | 
						
							| 30 |  | nfcv |  |-  F/_ n <_ | 
						
							| 31 |  | nfcv |  |-  F/_ n y | 
						
							| 32 | 29 30 31 | nfbr |  |-  F/ n ( M ` ( E ` k ) ) <_ y | 
						
							| 33 |  | 2fveq3 |  |-  ( n = k -> ( M ` ( E ` n ) ) = ( M ` ( E ` k ) ) ) | 
						
							| 34 | 33 | breq1d |  |-  ( n = k -> ( ( M ` ( E ` n ) ) <_ y <-> ( M ` ( E ` k ) ) <_ y ) ) | 
						
							| 35 | 27 32 34 | cbvralw |  |-  ( A. n e. Z ( M ` ( E ` n ) ) <_ y <-> A. k e. Z ( M ` ( E ` k ) ) <_ y ) | 
						
							| 36 | 35 | a1i |  |-  ( x = y -> ( A. n e. Z ( M ` ( E ` n ) ) <_ y <-> A. k e. Z ( M ` ( E ` k ) ) <_ y ) ) | 
						
							| 37 | 26 36 | bitrd |  |-  ( x = y -> ( A. n e. Z ( M ` ( E ` n ) ) <_ x <-> A. k e. Z ( M ` ( E ` k ) ) <_ y ) ) | 
						
							| 38 | 37 | cbvrexvw |  |-  ( E. x e. RR A. n e. Z ( M ` ( E ` n ) ) <_ x <-> E. y e. RR A. k e. Z ( M ` ( E ` k ) ) <_ y ) | 
						
							| 39 | 8 38 | sylib |  |-  ( ph -> E. y e. RR A. k e. Z ( M ` ( E ` k ) ) <_ y ) | 
						
							| 40 |  | nfcv |  |-  F/_ k ( M ` ( E ` n ) ) | 
						
							| 41 | 40 29 33 | cbvmpt |  |-  ( n e. Z |-> ( M ` ( E ` n ) ) ) = ( k e. Z |-> ( M ` ( E ` k ) ) ) | 
						
							| 42 | 9 41 | eqtri |  |-  S = ( k e. Z |-> ( M ` ( E ` k ) ) ) | 
						
							| 43 | 3 4 5 6 24 39 42 | meaiuninc |  |-  ( ph -> S ~~> ( M ` U_ k e. Z ( E ` k ) ) ) | 
						
							| 44 |  | nfcv |  |-  F/_ k ( E ` n ) | 
						
							| 45 |  | fveq2 |  |-  ( k = n -> ( E ` k ) = ( E ` n ) ) | 
						
							| 46 | 13 44 45 | cbviun |  |-  U_ k e. Z ( E ` k ) = U_ n e. Z ( E ` n ) | 
						
							| 47 | 46 | fveq2i |  |-  ( M ` U_ k e. Z ( E ` k ) ) = ( M ` U_ n e. Z ( E ` n ) ) | 
						
							| 48 | 43 47 | breqtrdi |  |-  ( ph -> S ~~> ( M ` U_ n e. Z ( E ` n ) ) ) |