Metamath Proof Explorer


Theorem meaiuninc3v

Description: Measures are continuous from below: if E is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is the general case of Proposition 112C (e) of Fremlin1 p. 16 . This theorem generalizes meaiuninc and meaiuninc2 where the sequence is required to be bounded. (Contributed by Glauco Siliprandi, 13-Feb-2022)

Ref Expression
Hypotheses meaiuninc3v.m φMMeas
meaiuninc3v.n φN
meaiuninc3v.z Z=N
meaiuninc3v.e φE:ZdomM
meaiuninc3v.i φnZEnEn+1
meaiuninc3v.s S=nZMEn
Assertion meaiuninc3v φS*MnZEn

Proof

Step Hyp Ref Expression
1 meaiuninc3v.m φMMeas
2 meaiuninc3v.n φN
3 meaiuninc3v.z Z=N
4 meaiuninc3v.e φE:ZdomM
5 meaiuninc3v.i φnZEnEn+1
6 meaiuninc3v.s S=nZMEn
7 2 adantr φxnZMEnxN
8 1 adantr φnZMMeas
9 eqid domM=domM
10 4 ffvelcdmda φnZEndomM
11 8 9 10 meaxrcl φnZMEn*
12 11 6 fmptd φS:Z*
13 12 adantr φxnZMEnxS:Z*
14 nfv nφ
15 nfcv _n
16 nfra1 nnZMEnx
17 15 16 nfrexw nxnZMEnx
18 14 17 nfan nφxnZMEnx
19 nfcv _nE
20 1 adantr φxnZMEnxMMeas
21 4 adantr φxnZMEnxE:ZdomM
22 5 adantlr φxnZMEnxnZEnEn+1
23 simpr φxnZMEnxxnZMEnx
24 18 19 20 7 3 21 22 23 6 meaiunincf φxnZMEnxSMnZEn
25 7 3 13 24 climxlim2 φxnZMEnxS*MnZEn
26 simpr φ¬xnZMEnx¬xnZMEnx
27 2fveq3 j=nMEj=MEn
28 27 breq2d j=nx<MEjx<MEn
29 28 cbvrexvw jZx<MEjnZx<MEn
30 29 a1i φxjZx<MEjnZx<MEn
31 rexr xx*
32 31 ad2antlr φxnZx*
33 11 adantlr φxnZMEn*
34 32 33 xrltnled φxnZx<MEn¬MEnx
35 34 rexbidva φxnZx<MEnnZ¬MEnx
36 30 35 bitrd φxjZx<MEjnZ¬MEnx
37 36 ralbidva φxjZx<MEjxnZ¬MEnx
38 rexnal nZ¬MEnx¬nZMEnx
39 38 ralbii xnZ¬MEnxx¬nZMEnx
40 ralnex x¬nZMEnx¬xnZMEnx
41 39 40 bitri xnZ¬MEnx¬xnZMEnx
42 41 a1i φxnZ¬MEnx¬xnZMEnx
43 37 42 bitrd φxjZx<MEj¬xnZMEnx
44 43 adantr φ¬xnZMEnxxjZx<MEj¬xnZMEnx
45 26 44 mpbird φ¬xnZMEnxxjZx<MEj
46 simpr φxjZx<MEjxjZx<MEj
47 45 46 syldan φ¬xnZMEnxxjZx<MEj
48 simp-4r φxjZx<MEjnjx
49 48 31 syl φxjZx<MEjnjx*
50 simp-4l φxjZx<MEjnjφ
51 3 uztrn2 jZnjnZ
52 51 ad4ant24 φxjZx<MEjnjnZ
53 12 ffvelcdmda φnZSn*
54 50 52 53 syl2anc φxjZx<MEjnjSn*
55 eleq1w n=jnZjZ
56 55 anbi2d n=jφnZφjZ
57 2fveq3 n=jMEn=MEj
58 57 eleq1d n=jMEn*MEj*
59 56 58 imbi12d n=jφnZMEn*φjZMEj*
60 59 11 chvarvv φjZMEj*
61 60 ad5ant13 φxjZx<MEjnjMEj*
62 simplr φxjZx<MEjnjx<MEj
63 1 3ad2ant1 φjZnjMMeas
64 4 ffvelcdmda φjZEjdomM
65 64 3adant3 φjZnjEjdomM
66 simp1 φjZnjφ
67 51 3adant1 φjZnjnZ
68 66 67 10 syl2anc φjZnjEndomM
69 simp3 φjZnjnj
70 simpll φjZkj..^nφ
71 3 uzssd3 jZjZ
72 71 adantr jZkj..^njZ
73 elfzouz kj..^nkj
74 73 adantl jZkj..^nkj
75 72 74 sseldd jZkj..^nkZ
76 75 adantll φjZkj..^nkZ
77 eleq1w n=knZkZ
78 77 anbi2d n=kφnZφkZ
79 fveq2 n=kEn=Ek
80 fvoveq1 n=kEn+1=Ek+1
81 79 80 sseq12d n=kEnEn+1EkEk+1
82 78 81 imbi12d n=kφnZEnEn+1φkZEkEk+1
83 82 5 chvarvv φkZEkEk+1
84 70 76 83 syl2anc φjZkj..^nEkEk+1
85 84 3adantl3 φjZnjkj..^nEkEk+1
86 69 85 ssinc φjZnjEjEn
87 63 9 65 68 86 meassle φjZnjMEjMEn
88 fvexd jZnjMEnV
89 6 fvmpt2 nZMEnVSn=MEn
90 51 88 89 syl2anc jZnjSn=MEn
91 90 3adant1 φjZnjSn=MEn
92 87 91 breqtrrd φjZnjMEjSn
93 92 ad5ant135 φxjZx<MEjnjMEjSn
94 49 61 54 62 93 xrltletrd φxjZx<MEjnjx<Sn
95 49 54 94 xrltled φxjZx<MEjnjxSn
96 95 ralrimiva φxjZx<MEjnjxSn
97 96 ex φxjZx<MEjnjxSn
98 97 reximdva φxjZx<MEjjZnjxSn
99 98 ralimdva φxjZx<MEjxjZnjxSn
100 99 imp φxjZx<MEjxjZnjxSn
101 nfmpt1 _nnZMEn
102 6 101 nfcxfr _nS
103 102 2 3 12 xlimpnf φS*+∞xjZnjxSn
104 103 adantr φxjZx<MEjS*+∞xjZnjxSn
105 100 104 mpbird φxjZx<MEjS*+∞
106 nfv xφ
107 nfra1 xxjZx<MEj
108 106 107 nfan xφxjZx<MEj
109 rspa xjZx<MEjxjZx<MEj
110 109 adantll φxjZx<MEjxjZx<MEj
111 nfv jφ
112 nfcv _j
113 nfre1 jjZx<MEj
114 112 113 nfralw jxjZx<MEj
115 111 114 nfan jφxjZx<MEj
116 nfv jx
117 115 116 nfan jφxjZx<MEjx
118 nfv jxMnZEn
119 31 ad3antlr φxjZx<MEjx*
120 1 9 dmmeasal φdomMSAlg
121 3 uzct Zω
122 121 a1i φZω
123 120 122 10 saliuncl φnZEndomM
124 1 9 123 meaxrcl φMnZEn*
125 124 ad3antrrr φxjZx<MEjMnZEn*
126 60 ad4ant13 φxjZx<MEjMEj*
127 simpr φxjZx<MEjx<MEj
128 1 adantr φjZMMeas
129 123 adantr φjZnZEndomM
130 fveq2 n=jEn=Ej
131 130 ssiun2s jZEjnZEn
132 131 adantl φjZEjnZEn
133 128 9 64 129 132 meassle φjZMEjMnZEn
134 133 ad4ant13 φxjZx<MEjMEjMnZEn
135 119 126 125 127 134 xrltletrd φxjZx<MEjx<MnZEn
136 119 125 135 xrltled φxjZx<MEjxMnZEn
137 136 exp31 φxjZx<MEjxMnZEn
138 137 adantlr φxjZx<MEjxjZx<MEjxMnZEn
139 117 118 138 rexlimd φxjZx<MEjxjZx<MEjxMnZEn
140 110 139 mpd φxjZx<MEjxxMnZEn
141 108 140 ralrimia φxjZx<MEjxxMnZEn
142 xrpnf MnZEn*MnZEn=+∞xxMnZEn
143 124 142 syl φMnZEn=+∞xxMnZEn
144 143 adantr φxjZx<MEjMnZEn=+∞xxMnZEn
145 141 144 mpbird φxjZx<MEjMnZEn=+∞
146 105 145 breqtrrd φxjZx<MEjS*MnZEn
147 47 146 syldan φ¬xnZMEnxS*MnZEn
148 25 147 pm2.61dan φS*MnZEn