Metamath Proof Explorer


Theorem xrpnf

Description: An extended real is plus infinity iff it's larger than all real numbers. (Contributed by Glauco Siliprandi, 13-Feb-2022)

Ref Expression
Assertion xrpnf A * A = +∞ x x A

Proof

Step Hyp Ref Expression
1 rexr x x *
2 1 adantl A = +∞ x x *
3 id A = +∞ A = +∞
4 pnfxr +∞ *
5 4 a1i A = +∞ +∞ *
6 3 5 eqeltrd A = +∞ A *
7 6 adantr A = +∞ x A *
8 ltpnf x x < +∞
9 8 adantl A = +∞ x x < +∞
10 simpl A = +∞ x A = +∞
11 9 10 breqtrrd A = +∞ x x < A
12 2 7 11 xrltled A = +∞ x x A
13 12 ralrimiva A = +∞ x x A
14 13 adantl A * A = +∞ x x A
15 simpll A * x x A A < +∞ A *
16 0red x x A 0
17 id x x A x x A
18 breq1 x = 0 x A 0 A
19 18 rspcva 0 x x A 0 A
20 16 17 19 syl2anc x x A 0 A
21 20 adantr x x A A = −∞ 0 A
22 simpr x x A A = −∞ A = −∞
23 21 22 breqtrd x x A A = −∞ 0 −∞
24 23 adantll A * x x A A = −∞ 0 −∞
25 mnflt0 −∞ < 0
26 mnfxr −∞ *
27 0xr 0 *
28 xrltnle −∞ * 0 * −∞ < 0 ¬ 0 −∞
29 26 27 28 mp2an −∞ < 0 ¬ 0 −∞
30 25 29 mpbi ¬ 0 −∞
31 30 a1i A * x x A A = −∞ ¬ 0 −∞
32 24 31 pm2.65da A * x x A ¬ A = −∞
33 32 neqned A * x x A A −∞
34 33 adantr A * x x A A < +∞ A −∞
35 simpl A * A < +∞ A *
36 4 a1i A * A < +∞ +∞ *
37 simpr A * A < +∞ A < +∞
38 35 36 37 xrltned A * A < +∞ A +∞
39 38 adantlr A * x x A A < +∞ A +∞
40 15 34 39 xrred A * x x A A < +∞ A
41 peano2re A A + 1
42 41 adantl x x A A A + 1
43 simpl x x A A x x A
44 breq1 x = A + 1 x A A + 1 A
45 44 rspcva A + 1 x x A A + 1 A
46 42 43 45 syl2anc x x A A A + 1 A
47 ltp1 A A < A + 1
48 id A A
49 48 41 ltnled A A < A + 1 ¬ A + 1 A
50 47 49 mpbid A ¬ A + 1 A
51 50 adantl x x A A ¬ A + 1 A
52 46 51 pm2.65da x x A ¬ A
53 52 ad2antlr A * x x A A < +∞ ¬ A
54 40 53 pm2.65da A * x x A ¬ A < +∞
55 nltpnft A * A = +∞ ¬ A < +∞
56 55 adantr A * x x A A = +∞ ¬ A < +∞
57 54 56 mpbird A * x x A A = +∞
58 14 57 impbida A * A = +∞ x x A