| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rexr |  |-  ( x e. RR -> x e. RR* ) | 
						
							| 2 | 1 | adantl |  |-  ( ( A = +oo /\ x e. RR ) -> x e. RR* ) | 
						
							| 3 |  | id |  |-  ( A = +oo -> A = +oo ) | 
						
							| 4 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 5 | 4 | a1i |  |-  ( A = +oo -> +oo e. RR* ) | 
						
							| 6 | 3 5 | eqeltrd |  |-  ( A = +oo -> A e. RR* ) | 
						
							| 7 | 6 | adantr |  |-  ( ( A = +oo /\ x e. RR ) -> A e. RR* ) | 
						
							| 8 |  | ltpnf |  |-  ( x e. RR -> x < +oo ) | 
						
							| 9 | 8 | adantl |  |-  ( ( A = +oo /\ x e. RR ) -> x < +oo ) | 
						
							| 10 |  | simpl |  |-  ( ( A = +oo /\ x e. RR ) -> A = +oo ) | 
						
							| 11 | 9 10 | breqtrrd |  |-  ( ( A = +oo /\ x e. RR ) -> x < A ) | 
						
							| 12 | 2 7 11 | xrltled |  |-  ( ( A = +oo /\ x e. RR ) -> x <_ A ) | 
						
							| 13 | 12 | ralrimiva |  |-  ( A = +oo -> A. x e. RR x <_ A ) | 
						
							| 14 | 13 | adantl |  |-  ( ( A e. RR* /\ A = +oo ) -> A. x e. RR x <_ A ) | 
						
							| 15 |  | simpll |  |-  ( ( ( A e. RR* /\ A. x e. RR x <_ A ) /\ A < +oo ) -> A e. RR* ) | 
						
							| 16 |  | 0red |  |-  ( A. x e. RR x <_ A -> 0 e. RR ) | 
						
							| 17 |  | id |  |-  ( A. x e. RR x <_ A -> A. x e. RR x <_ A ) | 
						
							| 18 |  | breq1 |  |-  ( x = 0 -> ( x <_ A <-> 0 <_ A ) ) | 
						
							| 19 | 18 | rspcva |  |-  ( ( 0 e. RR /\ A. x e. RR x <_ A ) -> 0 <_ A ) | 
						
							| 20 | 16 17 19 | syl2anc |  |-  ( A. x e. RR x <_ A -> 0 <_ A ) | 
						
							| 21 | 20 | adantr |  |-  ( ( A. x e. RR x <_ A /\ A = -oo ) -> 0 <_ A ) | 
						
							| 22 |  | simpr |  |-  ( ( A. x e. RR x <_ A /\ A = -oo ) -> A = -oo ) | 
						
							| 23 | 21 22 | breqtrd |  |-  ( ( A. x e. RR x <_ A /\ A = -oo ) -> 0 <_ -oo ) | 
						
							| 24 | 23 | adantll |  |-  ( ( ( A e. RR* /\ A. x e. RR x <_ A ) /\ A = -oo ) -> 0 <_ -oo ) | 
						
							| 25 |  | mnflt0 |  |-  -oo < 0 | 
						
							| 26 |  | mnfxr |  |-  -oo e. RR* | 
						
							| 27 |  | 0xr |  |-  0 e. RR* | 
						
							| 28 |  | xrltnle |  |-  ( ( -oo e. RR* /\ 0 e. RR* ) -> ( -oo < 0 <-> -. 0 <_ -oo ) ) | 
						
							| 29 | 26 27 28 | mp2an |  |-  ( -oo < 0 <-> -. 0 <_ -oo ) | 
						
							| 30 | 25 29 | mpbi |  |-  -. 0 <_ -oo | 
						
							| 31 | 30 | a1i |  |-  ( ( ( A e. RR* /\ A. x e. RR x <_ A ) /\ A = -oo ) -> -. 0 <_ -oo ) | 
						
							| 32 | 24 31 | pm2.65da |  |-  ( ( A e. RR* /\ A. x e. RR x <_ A ) -> -. A = -oo ) | 
						
							| 33 | 32 | neqned |  |-  ( ( A e. RR* /\ A. x e. RR x <_ A ) -> A =/= -oo ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ( A e. RR* /\ A. x e. RR x <_ A ) /\ A < +oo ) -> A =/= -oo ) | 
						
							| 35 |  | simpl |  |-  ( ( A e. RR* /\ A < +oo ) -> A e. RR* ) | 
						
							| 36 | 4 | a1i |  |-  ( ( A e. RR* /\ A < +oo ) -> +oo e. RR* ) | 
						
							| 37 |  | simpr |  |-  ( ( A e. RR* /\ A < +oo ) -> A < +oo ) | 
						
							| 38 | 35 36 37 | xrltned |  |-  ( ( A e. RR* /\ A < +oo ) -> A =/= +oo ) | 
						
							| 39 | 38 | adantlr |  |-  ( ( ( A e. RR* /\ A. x e. RR x <_ A ) /\ A < +oo ) -> A =/= +oo ) | 
						
							| 40 | 15 34 39 | xrred |  |-  ( ( ( A e. RR* /\ A. x e. RR x <_ A ) /\ A < +oo ) -> A e. RR ) | 
						
							| 41 |  | peano2re |  |-  ( A e. RR -> ( A + 1 ) e. RR ) | 
						
							| 42 | 41 | adantl |  |-  ( ( A. x e. RR x <_ A /\ A e. RR ) -> ( A + 1 ) e. RR ) | 
						
							| 43 |  | simpl |  |-  ( ( A. x e. RR x <_ A /\ A e. RR ) -> A. x e. RR x <_ A ) | 
						
							| 44 |  | breq1 |  |-  ( x = ( A + 1 ) -> ( x <_ A <-> ( A + 1 ) <_ A ) ) | 
						
							| 45 | 44 | rspcva |  |-  ( ( ( A + 1 ) e. RR /\ A. x e. RR x <_ A ) -> ( A + 1 ) <_ A ) | 
						
							| 46 | 42 43 45 | syl2anc |  |-  ( ( A. x e. RR x <_ A /\ A e. RR ) -> ( A + 1 ) <_ A ) | 
						
							| 47 |  | ltp1 |  |-  ( A e. RR -> A < ( A + 1 ) ) | 
						
							| 48 |  | id |  |-  ( A e. RR -> A e. RR ) | 
						
							| 49 | 48 41 | ltnled |  |-  ( A e. RR -> ( A < ( A + 1 ) <-> -. ( A + 1 ) <_ A ) ) | 
						
							| 50 | 47 49 | mpbid |  |-  ( A e. RR -> -. ( A + 1 ) <_ A ) | 
						
							| 51 | 50 | adantl |  |-  ( ( A. x e. RR x <_ A /\ A e. RR ) -> -. ( A + 1 ) <_ A ) | 
						
							| 52 | 46 51 | pm2.65da |  |-  ( A. x e. RR x <_ A -> -. A e. RR ) | 
						
							| 53 | 52 | ad2antlr |  |-  ( ( ( A e. RR* /\ A. x e. RR x <_ A ) /\ A < +oo ) -> -. A e. RR ) | 
						
							| 54 | 40 53 | pm2.65da |  |-  ( ( A e. RR* /\ A. x e. RR x <_ A ) -> -. A < +oo ) | 
						
							| 55 |  | nltpnft |  |-  ( A e. RR* -> ( A = +oo <-> -. A < +oo ) ) | 
						
							| 56 | 55 | adantr |  |-  ( ( A e. RR* /\ A. x e. RR x <_ A ) -> ( A = +oo <-> -. A < +oo ) ) | 
						
							| 57 | 54 56 | mpbird |  |-  ( ( A e. RR* /\ A. x e. RR x <_ A ) -> A = +oo ) | 
						
							| 58 | 14 57 | impbida |  |-  ( A e. RR* -> ( A = +oo <-> A. x e. RR x <_ A ) ) |