| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rexr | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  ∈  ℝ* ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( 𝐴  =  +∞  ∧  𝑥  ∈  ℝ )  →  𝑥  ∈  ℝ* ) | 
						
							| 3 |  | id | ⊢ ( 𝐴  =  +∞  →  𝐴  =  +∞ ) | 
						
							| 4 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 5 | 4 | a1i | ⊢ ( 𝐴  =  +∞  →  +∞  ∈  ℝ* ) | 
						
							| 6 | 3 5 | eqeltrd | ⊢ ( 𝐴  =  +∞  →  𝐴  ∈  ℝ* ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝐴  =  +∞  ∧  𝑥  ∈  ℝ )  →  𝐴  ∈  ℝ* ) | 
						
							| 8 |  | ltpnf | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  <  +∞ ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝐴  =  +∞  ∧  𝑥  ∈  ℝ )  →  𝑥  <  +∞ ) | 
						
							| 10 |  | simpl | ⊢ ( ( 𝐴  =  +∞  ∧  𝑥  ∈  ℝ )  →  𝐴  =  +∞ ) | 
						
							| 11 | 9 10 | breqtrrd | ⊢ ( ( 𝐴  =  +∞  ∧  𝑥  ∈  ℝ )  →  𝑥  <  𝐴 ) | 
						
							| 12 | 2 7 11 | xrltled | ⊢ ( ( 𝐴  =  +∞  ∧  𝑥  ∈  ℝ )  →  𝑥  ≤  𝐴 ) | 
						
							| 13 | 12 | ralrimiva | ⊢ ( 𝐴  =  +∞  →  ∀ 𝑥  ∈  ℝ 𝑥  ≤  𝐴 ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  =  +∞ )  →  ∀ 𝑥  ∈  ℝ 𝑥  ≤  𝐴 ) | 
						
							| 15 |  | simpll | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  ∀ 𝑥  ∈  ℝ 𝑥  ≤  𝐴 )  ∧  𝐴  <  +∞ )  →  𝐴  ∈  ℝ* ) | 
						
							| 16 |  | 0red | ⊢ ( ∀ 𝑥  ∈  ℝ 𝑥  ≤  𝐴  →  0  ∈  ℝ ) | 
						
							| 17 |  | id | ⊢ ( ∀ 𝑥  ∈  ℝ 𝑥  ≤  𝐴  →  ∀ 𝑥  ∈  ℝ 𝑥  ≤  𝐴 ) | 
						
							| 18 |  | breq1 | ⊢ ( 𝑥  =  0  →  ( 𝑥  ≤  𝐴  ↔  0  ≤  𝐴 ) ) | 
						
							| 19 | 18 | rspcva | ⊢ ( ( 0  ∈  ℝ  ∧  ∀ 𝑥  ∈  ℝ 𝑥  ≤  𝐴 )  →  0  ≤  𝐴 ) | 
						
							| 20 | 16 17 19 | syl2anc | ⊢ ( ∀ 𝑥  ∈  ℝ 𝑥  ≤  𝐴  →  0  ≤  𝐴 ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( ∀ 𝑥  ∈  ℝ 𝑥  ≤  𝐴  ∧  𝐴  =  -∞ )  →  0  ≤  𝐴 ) | 
						
							| 22 |  | simpr | ⊢ ( ( ∀ 𝑥  ∈  ℝ 𝑥  ≤  𝐴  ∧  𝐴  =  -∞ )  →  𝐴  =  -∞ ) | 
						
							| 23 | 21 22 | breqtrd | ⊢ ( ( ∀ 𝑥  ∈  ℝ 𝑥  ≤  𝐴  ∧  𝐴  =  -∞ )  →  0  ≤  -∞ ) | 
						
							| 24 | 23 | adantll | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  ∀ 𝑥  ∈  ℝ 𝑥  ≤  𝐴 )  ∧  𝐴  =  -∞ )  →  0  ≤  -∞ ) | 
						
							| 25 |  | mnflt0 | ⊢ -∞  <  0 | 
						
							| 26 |  | mnfxr | ⊢ -∞  ∈  ℝ* | 
						
							| 27 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 28 |  | xrltnle | ⊢ ( ( -∞  ∈  ℝ*  ∧  0  ∈  ℝ* )  →  ( -∞  <  0  ↔  ¬  0  ≤  -∞ ) ) | 
						
							| 29 | 26 27 28 | mp2an | ⊢ ( -∞  <  0  ↔  ¬  0  ≤  -∞ ) | 
						
							| 30 | 25 29 | mpbi | ⊢ ¬  0  ≤  -∞ | 
						
							| 31 | 30 | a1i | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  ∀ 𝑥  ∈  ℝ 𝑥  ≤  𝐴 )  ∧  𝐴  =  -∞ )  →  ¬  0  ≤  -∞ ) | 
						
							| 32 | 24 31 | pm2.65da | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  ∀ 𝑥  ∈  ℝ 𝑥  ≤  𝐴 )  →  ¬  𝐴  =  -∞ ) | 
						
							| 33 | 32 | neqned | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  ∀ 𝑥  ∈  ℝ 𝑥  ≤  𝐴 )  →  𝐴  ≠  -∞ ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  ∀ 𝑥  ∈  ℝ 𝑥  ≤  𝐴 )  ∧  𝐴  <  +∞ )  →  𝐴  ≠  -∞ ) | 
						
							| 35 |  | simpl | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  <  +∞ )  →  𝐴  ∈  ℝ* ) | 
						
							| 36 | 4 | a1i | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  <  +∞ )  →  +∞  ∈  ℝ* ) | 
						
							| 37 |  | simpr | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  <  +∞ )  →  𝐴  <  +∞ ) | 
						
							| 38 | 35 36 37 | xrltned | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  <  +∞ )  →  𝐴  ≠  +∞ ) | 
						
							| 39 | 38 | adantlr | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  ∀ 𝑥  ∈  ℝ 𝑥  ≤  𝐴 )  ∧  𝐴  <  +∞ )  →  𝐴  ≠  +∞ ) | 
						
							| 40 | 15 34 39 | xrred | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  ∀ 𝑥  ∈  ℝ 𝑥  ≤  𝐴 )  ∧  𝐴  <  +∞ )  →  𝐴  ∈  ℝ ) | 
						
							| 41 |  | peano2re | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  +  1 )  ∈  ℝ ) | 
						
							| 42 | 41 | adantl | ⊢ ( ( ∀ 𝑥  ∈  ℝ 𝑥  ≤  𝐴  ∧  𝐴  ∈  ℝ )  →  ( 𝐴  +  1 )  ∈  ℝ ) | 
						
							| 43 |  | simpl | ⊢ ( ( ∀ 𝑥  ∈  ℝ 𝑥  ≤  𝐴  ∧  𝐴  ∈  ℝ )  →  ∀ 𝑥  ∈  ℝ 𝑥  ≤  𝐴 ) | 
						
							| 44 |  | breq1 | ⊢ ( 𝑥  =  ( 𝐴  +  1 )  →  ( 𝑥  ≤  𝐴  ↔  ( 𝐴  +  1 )  ≤  𝐴 ) ) | 
						
							| 45 | 44 | rspcva | ⊢ ( ( ( 𝐴  +  1 )  ∈  ℝ  ∧  ∀ 𝑥  ∈  ℝ 𝑥  ≤  𝐴 )  →  ( 𝐴  +  1 )  ≤  𝐴 ) | 
						
							| 46 | 42 43 45 | syl2anc | ⊢ ( ( ∀ 𝑥  ∈  ℝ 𝑥  ≤  𝐴  ∧  𝐴  ∈  ℝ )  →  ( 𝐴  +  1 )  ≤  𝐴 ) | 
						
							| 47 |  | ltp1 | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  <  ( 𝐴  +  1 ) ) | 
						
							| 48 |  | id | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℝ ) | 
						
							| 49 | 48 41 | ltnled | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  <  ( 𝐴  +  1 )  ↔  ¬  ( 𝐴  +  1 )  ≤  𝐴 ) ) | 
						
							| 50 | 47 49 | mpbid | ⊢ ( 𝐴  ∈  ℝ  →  ¬  ( 𝐴  +  1 )  ≤  𝐴 ) | 
						
							| 51 | 50 | adantl | ⊢ ( ( ∀ 𝑥  ∈  ℝ 𝑥  ≤  𝐴  ∧  𝐴  ∈  ℝ )  →  ¬  ( 𝐴  +  1 )  ≤  𝐴 ) | 
						
							| 52 | 46 51 | pm2.65da | ⊢ ( ∀ 𝑥  ∈  ℝ 𝑥  ≤  𝐴  →  ¬  𝐴  ∈  ℝ ) | 
						
							| 53 | 52 | ad2antlr | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  ∀ 𝑥  ∈  ℝ 𝑥  ≤  𝐴 )  ∧  𝐴  <  +∞ )  →  ¬  𝐴  ∈  ℝ ) | 
						
							| 54 | 40 53 | pm2.65da | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  ∀ 𝑥  ∈  ℝ 𝑥  ≤  𝐴 )  →  ¬  𝐴  <  +∞ ) | 
						
							| 55 |  | nltpnft | ⊢ ( 𝐴  ∈  ℝ*  →  ( 𝐴  =  +∞  ↔  ¬  𝐴  <  +∞ ) ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  ∀ 𝑥  ∈  ℝ 𝑥  ≤  𝐴 )  →  ( 𝐴  =  +∞  ↔  ¬  𝐴  <  +∞ ) ) | 
						
							| 57 | 54 56 | mpbird | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  ∀ 𝑥  ∈  ℝ 𝑥  ≤  𝐴 )  →  𝐴  =  +∞ ) | 
						
							| 58 | 14 57 | impbida | ⊢ ( 𝐴  ∈  ℝ*  →  ( 𝐴  =  +∞  ↔  ∀ 𝑥  ∈  ℝ 𝑥  ≤  𝐴 ) ) |