Metamath Proof Explorer


Theorem xrpnf

Description: An extended real is plus infinity iff it's larger than all real numbers. (Contributed by Glauco Siliprandi, 13-Feb-2022)

Ref Expression
Assertion xrpnf ( 𝐴 ∈ ℝ* → ( 𝐴 = +∞ ↔ ∀ 𝑥 ∈ ℝ 𝑥𝐴 ) )

Proof

Step Hyp Ref Expression
1 rexr ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* )
2 1 adantl ( ( 𝐴 = +∞ ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ* )
3 id ( 𝐴 = +∞ → 𝐴 = +∞ )
4 pnfxr +∞ ∈ ℝ*
5 4 a1i ( 𝐴 = +∞ → +∞ ∈ ℝ* )
6 3 5 eqeltrd ( 𝐴 = +∞ → 𝐴 ∈ ℝ* )
7 6 adantr ( ( 𝐴 = +∞ ∧ 𝑥 ∈ ℝ ) → 𝐴 ∈ ℝ* )
8 ltpnf ( 𝑥 ∈ ℝ → 𝑥 < +∞ )
9 8 adantl ( ( 𝐴 = +∞ ∧ 𝑥 ∈ ℝ ) → 𝑥 < +∞ )
10 simpl ( ( 𝐴 = +∞ ∧ 𝑥 ∈ ℝ ) → 𝐴 = +∞ )
11 9 10 breqtrrd ( ( 𝐴 = +∞ ∧ 𝑥 ∈ ℝ ) → 𝑥 < 𝐴 )
12 2 7 11 xrltled ( ( 𝐴 = +∞ ∧ 𝑥 ∈ ℝ ) → 𝑥𝐴 )
13 12 ralrimiva ( 𝐴 = +∞ → ∀ 𝑥 ∈ ℝ 𝑥𝐴 )
14 13 adantl ( ( 𝐴 ∈ ℝ*𝐴 = +∞ ) → ∀ 𝑥 ∈ ℝ 𝑥𝐴 )
15 simpll ( ( ( 𝐴 ∈ ℝ* ∧ ∀ 𝑥 ∈ ℝ 𝑥𝐴 ) ∧ 𝐴 < +∞ ) → 𝐴 ∈ ℝ* )
16 0red ( ∀ 𝑥 ∈ ℝ 𝑥𝐴 → 0 ∈ ℝ )
17 id ( ∀ 𝑥 ∈ ℝ 𝑥𝐴 → ∀ 𝑥 ∈ ℝ 𝑥𝐴 )
18 breq1 ( 𝑥 = 0 → ( 𝑥𝐴 ↔ 0 ≤ 𝐴 ) )
19 18 rspcva ( ( 0 ∈ ℝ ∧ ∀ 𝑥 ∈ ℝ 𝑥𝐴 ) → 0 ≤ 𝐴 )
20 16 17 19 syl2anc ( ∀ 𝑥 ∈ ℝ 𝑥𝐴 → 0 ≤ 𝐴 )
21 20 adantr ( ( ∀ 𝑥 ∈ ℝ 𝑥𝐴𝐴 = -∞ ) → 0 ≤ 𝐴 )
22 simpr ( ( ∀ 𝑥 ∈ ℝ 𝑥𝐴𝐴 = -∞ ) → 𝐴 = -∞ )
23 21 22 breqtrd ( ( ∀ 𝑥 ∈ ℝ 𝑥𝐴𝐴 = -∞ ) → 0 ≤ -∞ )
24 23 adantll ( ( ( 𝐴 ∈ ℝ* ∧ ∀ 𝑥 ∈ ℝ 𝑥𝐴 ) ∧ 𝐴 = -∞ ) → 0 ≤ -∞ )
25 mnflt0 -∞ < 0
26 mnfxr -∞ ∈ ℝ*
27 0xr 0 ∈ ℝ*
28 xrltnle ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( -∞ < 0 ↔ ¬ 0 ≤ -∞ ) )
29 26 27 28 mp2an ( -∞ < 0 ↔ ¬ 0 ≤ -∞ )
30 25 29 mpbi ¬ 0 ≤ -∞
31 30 a1i ( ( ( 𝐴 ∈ ℝ* ∧ ∀ 𝑥 ∈ ℝ 𝑥𝐴 ) ∧ 𝐴 = -∞ ) → ¬ 0 ≤ -∞ )
32 24 31 pm2.65da ( ( 𝐴 ∈ ℝ* ∧ ∀ 𝑥 ∈ ℝ 𝑥𝐴 ) → ¬ 𝐴 = -∞ )
33 32 neqned ( ( 𝐴 ∈ ℝ* ∧ ∀ 𝑥 ∈ ℝ 𝑥𝐴 ) → 𝐴 ≠ -∞ )
34 33 adantr ( ( ( 𝐴 ∈ ℝ* ∧ ∀ 𝑥 ∈ ℝ 𝑥𝐴 ) ∧ 𝐴 < +∞ ) → 𝐴 ≠ -∞ )
35 simpl ( ( 𝐴 ∈ ℝ*𝐴 < +∞ ) → 𝐴 ∈ ℝ* )
36 4 a1i ( ( 𝐴 ∈ ℝ*𝐴 < +∞ ) → +∞ ∈ ℝ* )
37 simpr ( ( 𝐴 ∈ ℝ*𝐴 < +∞ ) → 𝐴 < +∞ )
38 35 36 37 xrltned ( ( 𝐴 ∈ ℝ*𝐴 < +∞ ) → 𝐴 ≠ +∞ )
39 38 adantlr ( ( ( 𝐴 ∈ ℝ* ∧ ∀ 𝑥 ∈ ℝ 𝑥𝐴 ) ∧ 𝐴 < +∞ ) → 𝐴 ≠ +∞ )
40 15 34 39 xrred ( ( ( 𝐴 ∈ ℝ* ∧ ∀ 𝑥 ∈ ℝ 𝑥𝐴 ) ∧ 𝐴 < +∞ ) → 𝐴 ∈ ℝ )
41 peano2re ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) ∈ ℝ )
42 41 adantl ( ( ∀ 𝑥 ∈ ℝ 𝑥𝐴𝐴 ∈ ℝ ) → ( 𝐴 + 1 ) ∈ ℝ )
43 simpl ( ( ∀ 𝑥 ∈ ℝ 𝑥𝐴𝐴 ∈ ℝ ) → ∀ 𝑥 ∈ ℝ 𝑥𝐴 )
44 breq1 ( 𝑥 = ( 𝐴 + 1 ) → ( 𝑥𝐴 ↔ ( 𝐴 + 1 ) ≤ 𝐴 ) )
45 44 rspcva ( ( ( 𝐴 + 1 ) ∈ ℝ ∧ ∀ 𝑥 ∈ ℝ 𝑥𝐴 ) → ( 𝐴 + 1 ) ≤ 𝐴 )
46 42 43 45 syl2anc ( ( ∀ 𝑥 ∈ ℝ 𝑥𝐴𝐴 ∈ ℝ ) → ( 𝐴 + 1 ) ≤ 𝐴 )
47 ltp1 ( 𝐴 ∈ ℝ → 𝐴 < ( 𝐴 + 1 ) )
48 id ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ )
49 48 41 ltnled ( 𝐴 ∈ ℝ → ( 𝐴 < ( 𝐴 + 1 ) ↔ ¬ ( 𝐴 + 1 ) ≤ 𝐴 ) )
50 47 49 mpbid ( 𝐴 ∈ ℝ → ¬ ( 𝐴 + 1 ) ≤ 𝐴 )
51 50 adantl ( ( ∀ 𝑥 ∈ ℝ 𝑥𝐴𝐴 ∈ ℝ ) → ¬ ( 𝐴 + 1 ) ≤ 𝐴 )
52 46 51 pm2.65da ( ∀ 𝑥 ∈ ℝ 𝑥𝐴 → ¬ 𝐴 ∈ ℝ )
53 52 ad2antlr ( ( ( 𝐴 ∈ ℝ* ∧ ∀ 𝑥 ∈ ℝ 𝑥𝐴 ) ∧ 𝐴 < +∞ ) → ¬ 𝐴 ∈ ℝ )
54 40 53 pm2.65da ( ( 𝐴 ∈ ℝ* ∧ ∀ 𝑥 ∈ ℝ 𝑥𝐴 ) → ¬ 𝐴 < +∞ )
55 nltpnft ( 𝐴 ∈ ℝ* → ( 𝐴 = +∞ ↔ ¬ 𝐴 < +∞ ) )
56 55 adantr ( ( 𝐴 ∈ ℝ* ∧ ∀ 𝑥 ∈ ℝ 𝑥𝐴 ) → ( 𝐴 = +∞ ↔ ¬ 𝐴 < +∞ ) )
57 54 56 mpbird ( ( 𝐴 ∈ ℝ* ∧ ∀ 𝑥 ∈ ℝ 𝑥𝐴 ) → 𝐴 = +∞ )
58 14 57 impbida ( 𝐴 ∈ ℝ* → ( 𝐴 = +∞ ↔ ∀ 𝑥 ∈ ℝ 𝑥𝐴 ) )