| Step |
Hyp |
Ref |
Expression |
| 1 |
|
meaiuninc3.p |
|- F/ n ph |
| 2 |
|
meaiuninc3.f |
|- F/_ n E |
| 3 |
|
meaiuninc3.m |
|- ( ph -> M e. Meas ) |
| 4 |
|
meaiuninc3.n |
|- ( ph -> N e. ZZ ) |
| 5 |
|
meaiuninc3.z |
|- Z = ( ZZ>= ` N ) |
| 6 |
|
meaiuninc3.e |
|- ( ph -> E : Z --> dom M ) |
| 7 |
|
meaiuninc3.i |
|- ( ( ph /\ n e. Z ) -> ( E ` n ) C_ ( E ` ( n + 1 ) ) ) |
| 8 |
|
meaiuninc3.s |
|- S = ( n e. Z |-> ( M ` ( E ` n ) ) ) |
| 9 |
|
nfv |
|- F/ n k e. Z |
| 10 |
1 9
|
nfan |
|- F/ n ( ph /\ k e. Z ) |
| 11 |
|
nfcv |
|- F/_ n k |
| 12 |
2 11
|
nffv |
|- F/_ n ( E ` k ) |
| 13 |
|
nfcv |
|- F/_ n ( k + 1 ) |
| 14 |
2 13
|
nffv |
|- F/_ n ( E ` ( k + 1 ) ) |
| 15 |
12 14
|
nfss |
|- F/ n ( E ` k ) C_ ( E ` ( k + 1 ) ) |
| 16 |
10 15
|
nfim |
|- F/ n ( ( ph /\ k e. Z ) -> ( E ` k ) C_ ( E ` ( k + 1 ) ) ) |
| 17 |
|
eleq1w |
|- ( n = k -> ( n e. Z <-> k e. Z ) ) |
| 18 |
17
|
anbi2d |
|- ( n = k -> ( ( ph /\ n e. Z ) <-> ( ph /\ k e. Z ) ) ) |
| 19 |
|
fveq2 |
|- ( n = k -> ( E ` n ) = ( E ` k ) ) |
| 20 |
|
fvoveq1 |
|- ( n = k -> ( E ` ( n + 1 ) ) = ( E ` ( k + 1 ) ) ) |
| 21 |
19 20
|
sseq12d |
|- ( n = k -> ( ( E ` n ) C_ ( E ` ( n + 1 ) ) <-> ( E ` k ) C_ ( E ` ( k + 1 ) ) ) ) |
| 22 |
18 21
|
imbi12d |
|- ( n = k -> ( ( ( ph /\ n e. Z ) -> ( E ` n ) C_ ( E ` ( n + 1 ) ) ) <-> ( ( ph /\ k e. Z ) -> ( E ` k ) C_ ( E ` ( k + 1 ) ) ) ) ) |
| 23 |
16 22 7
|
chvarfv |
|- ( ( ph /\ k e. Z ) -> ( E ` k ) C_ ( E ` ( k + 1 ) ) ) |
| 24 |
|
nfcv |
|- F/_ k M |
| 25 |
|
nfcv |
|- F/_ k ( E ` n ) |
| 26 |
24 25
|
nffv |
|- F/_ k ( M ` ( E ` n ) ) |
| 27 |
|
nfcv |
|- F/_ n M |
| 28 |
27 12
|
nffv |
|- F/_ n ( M ` ( E ` k ) ) |
| 29 |
|
2fveq3 |
|- ( n = k -> ( M ` ( E ` n ) ) = ( M ` ( E ` k ) ) ) |
| 30 |
26 28 29
|
cbvmpt |
|- ( n e. Z |-> ( M ` ( E ` n ) ) ) = ( k e. Z |-> ( M ` ( E ` k ) ) ) |
| 31 |
8 30
|
eqtri |
|- S = ( k e. Z |-> ( M ` ( E ` k ) ) ) |
| 32 |
3 4 5 6 23 31
|
meaiuninc3v |
|- ( ph -> S ~~>* ( M ` U_ k e. Z ( E ` k ) ) ) |
| 33 |
|
fveq2 |
|- ( k = n -> ( E ` k ) = ( E ` n ) ) |
| 34 |
12 25 33
|
cbviun |
|- U_ k e. Z ( E ` k ) = U_ n e. Z ( E ` n ) |
| 35 |
34
|
fveq2i |
|- ( M ` U_ k e. Z ( E ` k ) ) = ( M ` U_ n e. Z ( E ` n ) ) |
| 36 |
32 35
|
breqtrdi |
|- ( ph -> S ~~>* ( M ` U_ n e. Z ( E ` n ) ) ) |