| Step | Hyp | Ref | Expression | 
						
							| 1 |  | meaiuninc3.p |  |-  F/ n ph | 
						
							| 2 |  | meaiuninc3.f |  |-  F/_ n E | 
						
							| 3 |  | meaiuninc3.m |  |-  ( ph -> M e. Meas ) | 
						
							| 4 |  | meaiuninc3.n |  |-  ( ph -> N e. ZZ ) | 
						
							| 5 |  | meaiuninc3.z |  |-  Z = ( ZZ>= ` N ) | 
						
							| 6 |  | meaiuninc3.e |  |-  ( ph -> E : Z --> dom M ) | 
						
							| 7 |  | meaiuninc3.i |  |-  ( ( ph /\ n e. Z ) -> ( E ` n ) C_ ( E ` ( n + 1 ) ) ) | 
						
							| 8 |  | meaiuninc3.s |  |-  S = ( n e. Z |-> ( M ` ( E ` n ) ) ) | 
						
							| 9 |  | nfv |  |-  F/ n k e. Z | 
						
							| 10 | 1 9 | nfan |  |-  F/ n ( ph /\ k e. Z ) | 
						
							| 11 |  | nfcv |  |-  F/_ n k | 
						
							| 12 | 2 11 | nffv |  |-  F/_ n ( E ` k ) | 
						
							| 13 |  | nfcv |  |-  F/_ n ( k + 1 ) | 
						
							| 14 | 2 13 | nffv |  |-  F/_ n ( E ` ( k + 1 ) ) | 
						
							| 15 | 12 14 | nfss |  |-  F/ n ( E ` k ) C_ ( E ` ( k + 1 ) ) | 
						
							| 16 | 10 15 | nfim |  |-  F/ n ( ( ph /\ k e. Z ) -> ( E ` k ) C_ ( E ` ( k + 1 ) ) ) | 
						
							| 17 |  | eleq1w |  |-  ( n = k -> ( n e. Z <-> k e. Z ) ) | 
						
							| 18 | 17 | anbi2d |  |-  ( n = k -> ( ( ph /\ n e. Z ) <-> ( ph /\ k e. Z ) ) ) | 
						
							| 19 |  | fveq2 |  |-  ( n = k -> ( E ` n ) = ( E ` k ) ) | 
						
							| 20 |  | fvoveq1 |  |-  ( n = k -> ( E ` ( n + 1 ) ) = ( E ` ( k + 1 ) ) ) | 
						
							| 21 | 19 20 | sseq12d |  |-  ( n = k -> ( ( E ` n ) C_ ( E ` ( n + 1 ) ) <-> ( E ` k ) C_ ( E ` ( k + 1 ) ) ) ) | 
						
							| 22 | 18 21 | imbi12d |  |-  ( n = k -> ( ( ( ph /\ n e. Z ) -> ( E ` n ) C_ ( E ` ( n + 1 ) ) ) <-> ( ( ph /\ k e. Z ) -> ( E ` k ) C_ ( E ` ( k + 1 ) ) ) ) ) | 
						
							| 23 | 16 22 7 | chvarfv |  |-  ( ( ph /\ k e. Z ) -> ( E ` k ) C_ ( E ` ( k + 1 ) ) ) | 
						
							| 24 |  | nfcv |  |-  F/_ k M | 
						
							| 25 |  | nfcv |  |-  F/_ k ( E ` n ) | 
						
							| 26 | 24 25 | nffv |  |-  F/_ k ( M ` ( E ` n ) ) | 
						
							| 27 |  | nfcv |  |-  F/_ n M | 
						
							| 28 | 27 12 | nffv |  |-  F/_ n ( M ` ( E ` k ) ) | 
						
							| 29 |  | 2fveq3 |  |-  ( n = k -> ( M ` ( E ` n ) ) = ( M ` ( E ` k ) ) ) | 
						
							| 30 | 26 28 29 | cbvmpt |  |-  ( n e. Z |-> ( M ` ( E ` n ) ) ) = ( k e. Z |-> ( M ` ( E ` k ) ) ) | 
						
							| 31 | 8 30 | eqtri |  |-  S = ( k e. Z |-> ( M ` ( E ` k ) ) ) | 
						
							| 32 | 3 4 5 6 23 31 | meaiuninc3v |  |-  ( ph -> S ~~>* ( M ` U_ k e. Z ( E ` k ) ) ) | 
						
							| 33 |  | fveq2 |  |-  ( k = n -> ( E ` k ) = ( E ` n ) ) | 
						
							| 34 | 12 25 33 | cbviun |  |-  U_ k e. Z ( E ` k ) = U_ n e. Z ( E ` n ) | 
						
							| 35 | 34 | fveq2i |  |-  ( M ` U_ k e. Z ( E ` k ) ) = ( M ` U_ n e. Z ( E ` n ) ) | 
						
							| 36 | 32 35 | breqtrdi |  |-  ( ph -> S ~~>* ( M ` U_ n e. Z ( E ` n ) ) ) |