Step |
Hyp |
Ref |
Expression |
1 |
|
mgccnv.1 |
⊢ 𝐻 = ( 𝑉 MGalConn 𝑊 ) |
2 |
|
mgccnv.2 |
⊢ 𝑀 = ( ( ODual ‘ 𝑊 ) MGalConn ( ODual ‘ 𝑉 ) ) |
3 |
|
ancom |
⊢ ( ( 𝐹 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑊 ) ∧ 𝐺 : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ 𝑉 ) ) ↔ ( 𝐺 : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ 𝑉 ) ∧ 𝐹 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑊 ) ) ) |
4 |
3
|
a1i |
⊢ ( ( 𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → ( ( 𝐹 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑊 ) ∧ 𝐺 : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ 𝑉 ) ) ↔ ( 𝐺 : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ 𝑉 ) ∧ 𝐹 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑊 ) ) ) ) |
5 |
|
ralcom |
⊢ ( ∀ 𝑥 ∈ ( Base ‘ 𝑉 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 𝐹 ‘ 𝑥 ) ( le ‘ 𝑊 ) 𝑦 ↔ 𝑥 ( le ‘ 𝑉 ) ( 𝐺 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ∀ 𝑥 ∈ ( Base ‘ 𝑉 ) ( ( 𝐹 ‘ 𝑥 ) ( le ‘ 𝑊 ) 𝑦 ↔ 𝑥 ( le ‘ 𝑉 ) ( 𝐺 ‘ 𝑦 ) ) ) |
6 |
|
bicom |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ( le ‘ 𝑊 ) 𝑦 ↔ 𝑥 ( le ‘ 𝑉 ) ( 𝐺 ‘ 𝑦 ) ) ↔ ( 𝑥 ( le ‘ 𝑉 ) ( 𝐺 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑥 ) ( le ‘ 𝑊 ) 𝑦 ) ) |
7 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑦 ) ∈ V |
8 |
|
vex |
⊢ 𝑥 ∈ V |
9 |
7 8
|
brcnv |
⊢ ( ( 𝐺 ‘ 𝑦 ) ◡ ( le ‘ 𝑉 ) 𝑥 ↔ 𝑥 ( le ‘ 𝑉 ) ( 𝐺 ‘ 𝑦 ) ) |
10 |
9
|
bicomi |
⊢ ( 𝑥 ( le ‘ 𝑉 ) ( 𝐺 ‘ 𝑦 ) ↔ ( 𝐺 ‘ 𝑦 ) ◡ ( le ‘ 𝑉 ) 𝑥 ) |
11 |
10
|
a1i |
⊢ ( ( ( ( 𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) → ( 𝑥 ( le ‘ 𝑉 ) ( 𝐺 ‘ 𝑦 ) ↔ ( 𝐺 ‘ 𝑦 ) ◡ ( le ‘ 𝑉 ) 𝑥 ) ) |
12 |
|
vex |
⊢ 𝑦 ∈ V |
13 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
14 |
12 13
|
brcnv |
⊢ ( 𝑦 ◡ ( le ‘ 𝑊 ) ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) ( le ‘ 𝑊 ) 𝑦 ) |
15 |
14
|
bicomi |
⊢ ( ( 𝐹 ‘ 𝑥 ) ( le ‘ 𝑊 ) 𝑦 ↔ 𝑦 ◡ ( le ‘ 𝑊 ) ( 𝐹 ‘ 𝑥 ) ) |
16 |
15
|
a1i |
⊢ ( ( ( ( 𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( le ‘ 𝑊 ) 𝑦 ↔ 𝑦 ◡ ( le ‘ 𝑊 ) ( 𝐹 ‘ 𝑥 ) ) ) |
17 |
11 16
|
bibi12d |
⊢ ( ( ( ( 𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) → ( ( 𝑥 ( le ‘ 𝑉 ) ( 𝐺 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑥 ) ( le ‘ 𝑊 ) 𝑦 ) ↔ ( ( 𝐺 ‘ 𝑦 ) ◡ ( le ‘ 𝑉 ) 𝑥 ↔ 𝑦 ◡ ( le ‘ 𝑊 ) ( 𝐹 ‘ 𝑥 ) ) ) ) |
18 |
6 17
|
syl5bb |
⊢ ( ( ( ( 𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ( le ‘ 𝑊 ) 𝑦 ↔ 𝑥 ( le ‘ 𝑉 ) ( 𝐺 ‘ 𝑦 ) ) ↔ ( ( 𝐺 ‘ 𝑦 ) ◡ ( le ‘ 𝑉 ) 𝑥 ↔ 𝑦 ◡ ( le ‘ 𝑊 ) ( 𝐹 ‘ 𝑥 ) ) ) ) |
19 |
18
|
ralbidva |
⊢ ( ( ( 𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑉 ) ( ( 𝐹 ‘ 𝑥 ) ( le ‘ 𝑊 ) 𝑦 ↔ 𝑥 ( le ‘ 𝑉 ) ( 𝐺 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑉 ) ( ( 𝐺 ‘ 𝑦 ) ◡ ( le ‘ 𝑉 ) 𝑥 ↔ 𝑦 ◡ ( le ‘ 𝑊 ) ( 𝐹 ‘ 𝑥 ) ) ) ) |
20 |
19
|
ralbidva |
⊢ ( ( 𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ∀ 𝑥 ∈ ( Base ‘ 𝑉 ) ( ( 𝐹 ‘ 𝑥 ) ( le ‘ 𝑊 ) 𝑦 ↔ 𝑥 ( le ‘ 𝑉 ) ( 𝐺 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ∀ 𝑥 ∈ ( Base ‘ 𝑉 ) ( ( 𝐺 ‘ 𝑦 ) ◡ ( le ‘ 𝑉 ) 𝑥 ↔ 𝑦 ◡ ( le ‘ 𝑊 ) ( 𝐹 ‘ 𝑥 ) ) ) ) |
21 |
5 20
|
syl5bb |
⊢ ( ( 𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑉 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 𝐹 ‘ 𝑥 ) ( le ‘ 𝑊 ) 𝑦 ↔ 𝑥 ( le ‘ 𝑉 ) ( 𝐺 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ∀ 𝑥 ∈ ( Base ‘ 𝑉 ) ( ( 𝐺 ‘ 𝑦 ) ◡ ( le ‘ 𝑉 ) 𝑥 ↔ 𝑦 ◡ ( le ‘ 𝑊 ) ( 𝐹 ‘ 𝑥 ) ) ) ) |
22 |
4 21
|
anbi12d |
⊢ ( ( 𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → ( ( ( 𝐹 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑊 ) ∧ 𝐺 : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ 𝑉 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑉 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 𝐹 ‘ 𝑥 ) ( le ‘ 𝑊 ) 𝑦 ↔ 𝑥 ( le ‘ 𝑉 ) ( 𝐺 ‘ 𝑦 ) ) ) ↔ ( ( 𝐺 : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ 𝑉 ) ∧ 𝐹 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑊 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ∀ 𝑥 ∈ ( Base ‘ 𝑉 ) ( ( 𝐺 ‘ 𝑦 ) ◡ ( le ‘ 𝑉 ) 𝑥 ↔ 𝑦 ◡ ( le ‘ 𝑊 ) ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
23 |
|
eqid |
⊢ ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 ) |
24 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
25 |
|
eqid |
⊢ ( le ‘ 𝑉 ) = ( le ‘ 𝑉 ) |
26 |
|
eqid |
⊢ ( le ‘ 𝑊 ) = ( le ‘ 𝑊 ) |
27 |
|
simpl |
⊢ ( ( 𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → 𝑉 ∈ Proset ) |
28 |
|
simpr |
⊢ ( ( 𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → 𝑊 ∈ Proset ) |
29 |
23 24 25 26 1 27 28
|
mgcval |
⊢ ( ( 𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → ( 𝐹 𝐻 𝐺 ↔ ( ( 𝐹 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑊 ) ∧ 𝐺 : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ 𝑉 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑉 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 𝐹 ‘ 𝑥 ) ( le ‘ 𝑊 ) 𝑦 ↔ 𝑥 ( le ‘ 𝑉 ) ( 𝐺 ‘ 𝑦 ) ) ) ) ) |
30 |
|
eqid |
⊢ ( ODual ‘ 𝑊 ) = ( ODual ‘ 𝑊 ) |
31 |
30 24
|
odubas |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ ( ODual ‘ 𝑊 ) ) |
32 |
|
eqid |
⊢ ( ODual ‘ 𝑉 ) = ( ODual ‘ 𝑉 ) |
33 |
32 23
|
odubas |
⊢ ( Base ‘ 𝑉 ) = ( Base ‘ ( ODual ‘ 𝑉 ) ) |
34 |
30 26
|
oduleval |
⊢ ◡ ( le ‘ 𝑊 ) = ( le ‘ ( ODual ‘ 𝑊 ) ) |
35 |
32 25
|
oduleval |
⊢ ◡ ( le ‘ 𝑉 ) = ( le ‘ ( ODual ‘ 𝑉 ) ) |
36 |
30
|
oduprs |
⊢ ( 𝑊 ∈ Proset → ( ODual ‘ 𝑊 ) ∈ Proset ) |
37 |
28 36
|
syl |
⊢ ( ( 𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → ( ODual ‘ 𝑊 ) ∈ Proset ) |
38 |
32
|
oduprs |
⊢ ( 𝑉 ∈ Proset → ( ODual ‘ 𝑉 ) ∈ Proset ) |
39 |
27 38
|
syl |
⊢ ( ( 𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → ( ODual ‘ 𝑉 ) ∈ Proset ) |
40 |
31 33 34 35 2 37 39
|
mgcval |
⊢ ( ( 𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → ( 𝐺 𝑀 𝐹 ↔ ( ( 𝐺 : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ 𝑉 ) ∧ 𝐹 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑊 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ∀ 𝑥 ∈ ( Base ‘ 𝑉 ) ( ( 𝐺 ‘ 𝑦 ) ◡ ( le ‘ 𝑉 ) 𝑥 ↔ 𝑦 ◡ ( le ‘ 𝑊 ) ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
41 |
22 29 40
|
3bitr4d |
⊢ ( ( 𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → ( 𝐹 𝐻 𝐺 ↔ 𝐺 𝑀 𝐹 ) ) |