Step |
Hyp |
Ref |
Expression |
1 |
|
pwrssmgc.1 |
⊢ 𝐺 = ( 𝑛 ∈ 𝒫 𝑌 ↦ ( ◡ 𝐹 “ 𝑛 ) ) |
2 |
|
pwrssmgc.2 |
⊢ 𝐻 = ( 𝑚 ∈ 𝒫 𝑋 ↦ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑚 } ) |
3 |
|
pwrssmgc.3 |
⊢ 𝑉 = ( toInc ‘ 𝒫 𝑌 ) |
4 |
|
pwrssmgc.4 |
⊢ 𝑊 = ( toInc ‘ 𝒫 𝑋 ) |
5 |
|
pwrssmgc.5 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
6 |
|
pwrssmgc.6 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
pwrssmgc.7 |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
8 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝒫 𝑌 ) → 𝑋 ∈ 𝐴 ) |
9 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ 𝑛 ) ⊆ dom 𝐹 |
10 |
9 7
|
fssdm |
⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑛 ) ⊆ 𝑋 ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝒫 𝑌 ) → ( ◡ 𝐹 “ 𝑛 ) ⊆ 𝑋 ) |
12 |
8 11
|
sselpwd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝒫 𝑌 ) → ( ◡ 𝐹 “ 𝑛 ) ∈ 𝒫 𝑋 ) |
13 |
12 1
|
fmptd |
⊢ ( 𝜑 → 𝐺 : 𝒫 𝑌 ⟶ 𝒫 𝑋 ) |
14 |
|
pwexg |
⊢ ( 𝑌 ∈ 𝐵 → 𝒫 𝑌 ∈ V ) |
15 |
3
|
ipobas |
⊢ ( 𝒫 𝑌 ∈ V → 𝒫 𝑌 = ( Base ‘ 𝑉 ) ) |
16 |
6 14 15
|
3syl |
⊢ ( 𝜑 → 𝒫 𝑌 = ( Base ‘ 𝑉 ) ) |
17 |
|
pwexg |
⊢ ( 𝑋 ∈ 𝐴 → 𝒫 𝑋 ∈ V ) |
18 |
4
|
ipobas |
⊢ ( 𝒫 𝑋 ∈ V → 𝒫 𝑋 = ( Base ‘ 𝑊 ) ) |
19 |
5 17 18
|
3syl |
⊢ ( 𝜑 → 𝒫 𝑋 = ( Base ‘ 𝑊 ) ) |
20 |
16 19
|
feq23d |
⊢ ( 𝜑 → ( 𝐺 : 𝒫 𝑌 ⟶ 𝒫 𝑋 ↔ 𝐺 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑊 ) ) ) |
21 |
13 20
|
mpbid |
⊢ ( 𝜑 → 𝐺 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑊 ) ) |
22 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝒫 𝑋 ) → 𝑌 ∈ 𝐵 ) |
23 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑚 } ⊆ 𝑌 |
24 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝒫 𝑋 ) → { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑚 } ⊆ 𝑌 ) |
25 |
22 24
|
sselpwd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝒫 𝑋 ) → { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑚 } ∈ 𝒫 𝑌 ) |
26 |
25 2
|
fmptd |
⊢ ( 𝜑 → 𝐻 : 𝒫 𝑋 ⟶ 𝒫 𝑌 ) |
27 |
19 16
|
feq23d |
⊢ ( 𝜑 → ( 𝐻 : 𝒫 𝑋 ⟶ 𝒫 𝑌 ↔ 𝐻 : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ 𝑉 ) ) ) |
28 |
26 27
|
mpbid |
⊢ ( 𝜑 → 𝐻 : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ 𝑉 ) ) |
29 |
21 28
|
jca |
⊢ ( 𝜑 → ( 𝐺 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑊 ) ∧ 𝐻 : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ 𝑉 ) ) ) |
30 |
|
sneq |
⊢ ( 𝑦 = 𝑗 → { 𝑦 } = { 𝑗 } ) |
31 |
30
|
imaeq2d |
⊢ ( 𝑦 = 𝑗 → ( ◡ 𝐹 “ { 𝑦 } ) = ( ◡ 𝐹 “ { 𝑗 } ) ) |
32 |
31
|
sseq1d |
⊢ ( 𝑦 = 𝑗 → ( ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 ↔ ( ◡ 𝐹 “ { 𝑗 } ) ⊆ 𝑣 ) ) |
33 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝑢 ∈ ( Base ‘ 𝑉 ) ) |
34 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝒫 𝑌 = ( Base ‘ 𝑉 ) ) |
35 |
33 34
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝑢 ∈ 𝒫 𝑌 ) |
36 |
35
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ◡ 𝐹 “ 𝑢 ) ⊆ 𝑣 ) → 𝑢 ∈ 𝒫 𝑌 ) |
37 |
36
|
elpwid |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ◡ 𝐹 “ 𝑢 ) ⊆ 𝑣 ) → 𝑢 ⊆ 𝑌 ) |
38 |
37
|
sselda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ◡ 𝐹 “ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑗 ∈ 𝑢 ) → 𝑗 ∈ 𝑌 ) |
39 |
7
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
40 |
39
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ◡ 𝐹 “ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑗 ∈ 𝑢 ) → Fun 𝐹 ) |
41 |
|
snssi |
⊢ ( 𝑗 ∈ 𝑢 → { 𝑗 } ⊆ 𝑢 ) |
42 |
41
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ◡ 𝐹 “ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑗 ∈ 𝑢 ) → { 𝑗 } ⊆ 𝑢 ) |
43 |
|
sspreima |
⊢ ( ( Fun 𝐹 ∧ { 𝑗 } ⊆ 𝑢 ) → ( ◡ 𝐹 “ { 𝑗 } ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) |
44 |
40 42 43
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ◡ 𝐹 “ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑗 ∈ 𝑢 ) → ( ◡ 𝐹 “ { 𝑗 } ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) |
45 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ◡ 𝐹 “ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑗 ∈ 𝑢 ) → ( ◡ 𝐹 “ 𝑢 ) ⊆ 𝑣 ) |
46 |
44 45
|
sstrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ◡ 𝐹 “ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑗 ∈ 𝑢 ) → ( ◡ 𝐹 “ { 𝑗 } ) ⊆ 𝑣 ) |
47 |
32 38 46
|
elrabd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ◡ 𝐹 “ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑗 ∈ 𝑢 ) → 𝑗 ∈ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) |
48 |
47
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ◡ 𝐹 “ 𝑢 ) ⊆ 𝑣 ) → ( 𝑗 ∈ 𝑢 → 𝑗 ∈ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ) |
49 |
48
|
ssrdv |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ◡ 𝐹 “ 𝑢 ) ⊆ 𝑣 ) → 𝑢 ⊆ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) |
50 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ∧ 𝑖 ∈ ( ◡ 𝐹 “ 𝑢 ) ) → 𝑢 ⊆ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) |
51 |
7
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
52 |
51
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ∧ 𝑖 ∈ ( ◡ 𝐹 “ 𝑢 ) ) → 𝐹 Fn 𝑋 ) |
53 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ∧ 𝑖 ∈ ( ◡ 𝐹 “ 𝑢 ) ) → 𝑖 ∈ ( ◡ 𝐹 “ 𝑢 ) ) |
54 |
|
elpreima |
⊢ ( 𝐹 Fn 𝑋 → ( 𝑖 ∈ ( ◡ 𝐹 “ 𝑢 ) ↔ ( 𝑖 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑖 ) ∈ 𝑢 ) ) ) |
55 |
54
|
biimpa |
⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑖 ∈ ( ◡ 𝐹 “ 𝑢 ) ) → ( 𝑖 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑖 ) ∈ 𝑢 ) ) |
56 |
52 53 55
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ∧ 𝑖 ∈ ( ◡ 𝐹 “ 𝑢 ) ) → ( 𝑖 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑖 ) ∈ 𝑢 ) ) |
57 |
56
|
simprd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ∧ 𝑖 ∈ ( ◡ 𝐹 “ 𝑢 ) ) → ( 𝐹 ‘ 𝑖 ) ∈ 𝑢 ) |
58 |
50 57
|
sseldd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ∧ 𝑖 ∈ ( ◡ 𝐹 “ 𝑢 ) ) → ( 𝐹 ‘ 𝑖 ) ∈ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) |
59 |
|
sneq |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑖 ) → { 𝑦 } = { ( 𝐹 ‘ 𝑖 ) } ) |
60 |
59
|
imaeq2d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑖 ) → ( ◡ 𝐹 “ { 𝑦 } ) = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑖 ) } ) ) |
61 |
60
|
sseq1d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑖 ) → ( ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 ↔ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑖 ) } ) ⊆ 𝑣 ) ) |
62 |
61
|
elrab |
⊢ ( ( 𝐹 ‘ 𝑖 ) ∈ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ↔ ( ( 𝐹 ‘ 𝑖 ) ∈ 𝑌 ∧ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑖 ) } ) ⊆ 𝑣 ) ) |
63 |
62
|
simprbi |
⊢ ( ( 𝐹 ‘ 𝑖 ) ∈ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } → ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑖 ) } ) ⊆ 𝑣 ) |
64 |
58 63
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ∧ 𝑖 ∈ ( ◡ 𝐹 “ 𝑢 ) ) → ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑖 ) } ) ⊆ 𝑣 ) |
65 |
56
|
simpld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ∧ 𝑖 ∈ ( ◡ 𝐹 “ 𝑢 ) ) → 𝑖 ∈ 𝑋 ) |
66 |
|
eqidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ∧ 𝑖 ∈ ( ◡ 𝐹 “ 𝑢 ) ) → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 𝑖 ) ) |
67 |
|
fniniseg |
⊢ ( 𝐹 Fn 𝑋 → ( 𝑖 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑖 ) } ) ↔ ( 𝑖 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 𝑖 ) ) ) ) |
68 |
67
|
biimpar |
⊢ ( ( 𝐹 Fn 𝑋 ∧ ( 𝑖 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 𝑖 ) ) ) → 𝑖 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑖 ) } ) ) |
69 |
52 65 66 68
|
syl12anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ∧ 𝑖 ∈ ( ◡ 𝐹 “ 𝑢 ) ) → 𝑖 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑖 ) } ) ) |
70 |
64 69
|
sseldd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ∧ 𝑖 ∈ ( ◡ 𝐹 “ 𝑢 ) ) → 𝑖 ∈ 𝑣 ) |
71 |
70
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) → ( 𝑖 ∈ ( ◡ 𝐹 “ 𝑢 ) → 𝑖 ∈ 𝑣 ) ) |
72 |
71
|
ssrdv |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) → ( ◡ 𝐹 “ 𝑢 ) ⊆ 𝑣 ) |
73 |
49 72
|
impbida |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( ( ◡ 𝐹 “ 𝑢 ) ⊆ 𝑣 ↔ 𝑢 ⊆ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ) |
74 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑛 = 𝑢 ) → 𝑛 = 𝑢 ) |
75 |
74
|
imaeq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑛 = 𝑢 ) → ( ◡ 𝐹 “ 𝑛 ) = ( ◡ 𝐹 “ 𝑢 ) ) |
76 |
7 5
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
77 |
|
cnvexg |
⊢ ( 𝐹 ∈ V → ◡ 𝐹 ∈ V ) |
78 |
|
imaexg |
⊢ ( ◡ 𝐹 ∈ V → ( ◡ 𝐹 “ 𝑢 ) ∈ V ) |
79 |
76 77 78
|
3syl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑢 ) ∈ V ) |
80 |
79
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( ◡ 𝐹 “ 𝑢 ) ∈ V ) |
81 |
1 75 35 80
|
fvmptd2 |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( 𝐺 ‘ 𝑢 ) = ( ◡ 𝐹 “ 𝑢 ) ) |
82 |
81
|
sseq1d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝐺 ‘ 𝑢 ) ⊆ 𝑣 ↔ ( ◡ 𝐹 “ 𝑢 ) ⊆ 𝑣 ) ) |
83 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑚 = 𝑣 ) → 𝑚 = 𝑣 ) |
84 |
83
|
sseq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑚 = 𝑣 ) → ( ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑚 ↔ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 ) ) |
85 |
84
|
rabbidv |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑚 = 𝑣 ) → { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑚 } = { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) |
86 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝑣 ∈ ( Base ‘ 𝑊 ) ) |
87 |
5 17
|
syl |
⊢ ( 𝜑 → 𝒫 𝑋 ∈ V ) |
88 |
87
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝒫 𝑋 ∈ V ) |
89 |
88 18
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝒫 𝑋 = ( Base ‘ 𝑊 ) ) |
90 |
86 89
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝑣 ∈ 𝒫 𝑋 ) |
91 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝑌 ∈ 𝐵 ) |
92 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ⊆ 𝑌 |
93 |
92
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ⊆ 𝑌 ) |
94 |
91 93
|
sselpwd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ∈ 𝒫 𝑌 ) |
95 |
2 85 90 94
|
fvmptd2 |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( 𝐻 ‘ 𝑣 ) = { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) |
96 |
95
|
sseq2d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑢 ⊆ ( 𝐻 ‘ 𝑣 ) ↔ 𝑢 ⊆ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ) |
97 |
73 82 96
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝐺 ‘ 𝑢 ) ⊆ 𝑣 ↔ 𝑢 ⊆ ( 𝐻 ‘ 𝑣 ) ) ) |
98 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝐺 : 𝒫 𝑌 ⟶ 𝒫 𝑋 ) |
99 |
98 35
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( 𝐺 ‘ 𝑢 ) ∈ 𝒫 𝑋 ) |
100 |
|
eqid |
⊢ ( le ‘ 𝑊 ) = ( le ‘ 𝑊 ) |
101 |
4 100
|
ipole |
⊢ ( ( 𝒫 𝑋 ∈ V ∧ ( 𝐺 ‘ 𝑢 ) ∈ 𝒫 𝑋 ∧ 𝑣 ∈ 𝒫 𝑋 ) → ( ( 𝐺 ‘ 𝑢 ) ( le ‘ 𝑊 ) 𝑣 ↔ ( 𝐺 ‘ 𝑢 ) ⊆ 𝑣 ) ) |
102 |
88 99 90 101
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝐺 ‘ 𝑢 ) ( le ‘ 𝑊 ) 𝑣 ↔ ( 𝐺 ‘ 𝑢 ) ⊆ 𝑣 ) ) |
103 |
6 14
|
syl |
⊢ ( 𝜑 → 𝒫 𝑌 ∈ V ) |
104 |
103
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝒫 𝑌 ∈ V ) |
105 |
26
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝐻 : 𝒫 𝑋 ⟶ 𝒫 𝑌 ) |
106 |
105 90
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( 𝐻 ‘ 𝑣 ) ∈ 𝒫 𝑌 ) |
107 |
|
eqid |
⊢ ( le ‘ 𝑉 ) = ( le ‘ 𝑉 ) |
108 |
3 107
|
ipole |
⊢ ( ( 𝒫 𝑌 ∈ V ∧ 𝑢 ∈ 𝒫 𝑌 ∧ ( 𝐻 ‘ 𝑣 ) ∈ 𝒫 𝑌 ) → ( 𝑢 ( le ‘ 𝑉 ) ( 𝐻 ‘ 𝑣 ) ↔ 𝑢 ⊆ ( 𝐻 ‘ 𝑣 ) ) ) |
109 |
104 35 106 108
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑢 ( le ‘ 𝑉 ) ( 𝐻 ‘ 𝑣 ) ↔ 𝑢 ⊆ ( 𝐻 ‘ 𝑣 ) ) ) |
110 |
97 102 109
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝐺 ‘ 𝑢 ) ( le ‘ 𝑊 ) 𝑣 ↔ 𝑢 ( le ‘ 𝑉 ) ( 𝐻 ‘ 𝑣 ) ) ) |
111 |
110
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑉 ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝐺 ‘ 𝑢 ) ( le ‘ 𝑊 ) 𝑣 ↔ 𝑢 ( le ‘ 𝑉 ) ( 𝐻 ‘ 𝑣 ) ) ) |
112 |
111
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑢 ∈ ( Base ‘ 𝑉 ) ∀ 𝑣 ∈ ( Base ‘ 𝑊 ) ( ( 𝐺 ‘ 𝑢 ) ( le ‘ 𝑊 ) 𝑣 ↔ 𝑢 ( le ‘ 𝑉 ) ( 𝐻 ‘ 𝑣 ) ) ) |
113 |
|
eqid |
⊢ ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 ) |
114 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
115 |
|
eqid |
⊢ ( 𝑉 MGalConn 𝑊 ) = ( 𝑉 MGalConn 𝑊 ) |
116 |
3
|
ipopos |
⊢ 𝑉 ∈ Poset |
117 |
|
posprs |
⊢ ( 𝑉 ∈ Poset → 𝑉 ∈ Proset ) |
118 |
116 117
|
mp1i |
⊢ ( 𝜑 → 𝑉 ∈ Proset ) |
119 |
4
|
ipopos |
⊢ 𝑊 ∈ Poset |
120 |
|
posprs |
⊢ ( 𝑊 ∈ Poset → 𝑊 ∈ Proset ) |
121 |
119 120
|
mp1i |
⊢ ( 𝜑 → 𝑊 ∈ Proset ) |
122 |
113 114 107 100 115 118 121
|
mgcval |
⊢ ( 𝜑 → ( 𝐺 ( 𝑉 MGalConn 𝑊 ) 𝐻 ↔ ( ( 𝐺 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑊 ) ∧ 𝐻 : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ 𝑉 ) ) ∧ ∀ 𝑢 ∈ ( Base ‘ 𝑉 ) ∀ 𝑣 ∈ ( Base ‘ 𝑊 ) ( ( 𝐺 ‘ 𝑢 ) ( le ‘ 𝑊 ) 𝑣 ↔ 𝑢 ( le ‘ 𝑉 ) ( 𝐻 ‘ 𝑣 ) ) ) ) ) |
123 |
29 112 122
|
mpbir2and |
⊢ ( 𝜑 → 𝐺 ( 𝑉 MGalConn 𝑊 ) 𝐻 ) |