| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwrssmgc.1 |
⊢ 𝐺 = ( 𝑛 ∈ 𝒫 𝑌 ↦ ( ◡ 𝐹 “ 𝑛 ) ) |
| 2 |
|
pwrssmgc.2 |
⊢ 𝐻 = ( 𝑚 ∈ 𝒫 𝑋 ↦ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑚 } ) |
| 3 |
|
pwrssmgc.3 |
⊢ 𝑉 = ( toInc ‘ 𝒫 𝑌 ) |
| 4 |
|
pwrssmgc.4 |
⊢ 𝑊 = ( toInc ‘ 𝒫 𝑋 ) |
| 5 |
|
pwrssmgc.5 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 6 |
|
pwrssmgc.6 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 7 |
|
pwrssmgc.7 |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 8 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝒫 𝑌 ) → 𝑋 ∈ 𝐴 ) |
| 9 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ 𝑛 ) ⊆ dom 𝐹 |
| 10 |
9 7
|
fssdm |
⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑛 ) ⊆ 𝑋 ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝒫 𝑌 ) → ( ◡ 𝐹 “ 𝑛 ) ⊆ 𝑋 ) |
| 12 |
8 11
|
sselpwd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝒫 𝑌 ) → ( ◡ 𝐹 “ 𝑛 ) ∈ 𝒫 𝑋 ) |
| 13 |
12 1
|
fmptd |
⊢ ( 𝜑 → 𝐺 : 𝒫 𝑌 ⟶ 𝒫 𝑋 ) |
| 14 |
|
pwexg |
⊢ ( 𝑌 ∈ 𝐵 → 𝒫 𝑌 ∈ V ) |
| 15 |
3
|
ipobas |
⊢ ( 𝒫 𝑌 ∈ V → 𝒫 𝑌 = ( Base ‘ 𝑉 ) ) |
| 16 |
6 14 15
|
3syl |
⊢ ( 𝜑 → 𝒫 𝑌 = ( Base ‘ 𝑉 ) ) |
| 17 |
|
pwexg |
⊢ ( 𝑋 ∈ 𝐴 → 𝒫 𝑋 ∈ V ) |
| 18 |
4
|
ipobas |
⊢ ( 𝒫 𝑋 ∈ V → 𝒫 𝑋 = ( Base ‘ 𝑊 ) ) |
| 19 |
5 17 18
|
3syl |
⊢ ( 𝜑 → 𝒫 𝑋 = ( Base ‘ 𝑊 ) ) |
| 20 |
16 19
|
feq23d |
⊢ ( 𝜑 → ( 𝐺 : 𝒫 𝑌 ⟶ 𝒫 𝑋 ↔ 𝐺 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑊 ) ) ) |
| 21 |
13 20
|
mpbid |
⊢ ( 𝜑 → 𝐺 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑊 ) ) |
| 22 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝒫 𝑋 ) → 𝑌 ∈ 𝐵 ) |
| 23 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑚 } ⊆ 𝑌 |
| 24 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝒫 𝑋 ) → { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑚 } ⊆ 𝑌 ) |
| 25 |
22 24
|
sselpwd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝒫 𝑋 ) → { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑚 } ∈ 𝒫 𝑌 ) |
| 26 |
25 2
|
fmptd |
⊢ ( 𝜑 → 𝐻 : 𝒫 𝑋 ⟶ 𝒫 𝑌 ) |
| 27 |
19 16
|
feq23d |
⊢ ( 𝜑 → ( 𝐻 : 𝒫 𝑋 ⟶ 𝒫 𝑌 ↔ 𝐻 : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ 𝑉 ) ) ) |
| 28 |
26 27
|
mpbid |
⊢ ( 𝜑 → 𝐻 : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ 𝑉 ) ) |
| 29 |
21 28
|
jca |
⊢ ( 𝜑 → ( 𝐺 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑊 ) ∧ 𝐻 : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ 𝑉 ) ) ) |
| 30 |
|
sneq |
⊢ ( 𝑦 = 𝑗 → { 𝑦 } = { 𝑗 } ) |
| 31 |
30
|
imaeq2d |
⊢ ( 𝑦 = 𝑗 → ( ◡ 𝐹 “ { 𝑦 } ) = ( ◡ 𝐹 “ { 𝑗 } ) ) |
| 32 |
31
|
sseq1d |
⊢ ( 𝑦 = 𝑗 → ( ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 ↔ ( ◡ 𝐹 “ { 𝑗 } ) ⊆ 𝑣 ) ) |
| 33 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝑢 ∈ ( Base ‘ 𝑉 ) ) |
| 34 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝒫 𝑌 = ( Base ‘ 𝑉 ) ) |
| 35 |
33 34
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝑢 ∈ 𝒫 𝑌 ) |
| 36 |
35
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ◡ 𝐹 “ 𝑢 ) ⊆ 𝑣 ) → 𝑢 ∈ 𝒫 𝑌 ) |
| 37 |
36
|
elpwid |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ◡ 𝐹 “ 𝑢 ) ⊆ 𝑣 ) → 𝑢 ⊆ 𝑌 ) |
| 38 |
37
|
sselda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ◡ 𝐹 “ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑗 ∈ 𝑢 ) → 𝑗 ∈ 𝑌 ) |
| 39 |
7
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
| 40 |
39
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ◡ 𝐹 “ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑗 ∈ 𝑢 ) → Fun 𝐹 ) |
| 41 |
|
snssi |
⊢ ( 𝑗 ∈ 𝑢 → { 𝑗 } ⊆ 𝑢 ) |
| 42 |
41
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ◡ 𝐹 “ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑗 ∈ 𝑢 ) → { 𝑗 } ⊆ 𝑢 ) |
| 43 |
|
sspreima |
⊢ ( ( Fun 𝐹 ∧ { 𝑗 } ⊆ 𝑢 ) → ( ◡ 𝐹 “ { 𝑗 } ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) |
| 44 |
40 42 43
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ◡ 𝐹 “ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑗 ∈ 𝑢 ) → ( ◡ 𝐹 “ { 𝑗 } ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) |
| 45 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ◡ 𝐹 “ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑗 ∈ 𝑢 ) → ( ◡ 𝐹 “ 𝑢 ) ⊆ 𝑣 ) |
| 46 |
44 45
|
sstrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ◡ 𝐹 “ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑗 ∈ 𝑢 ) → ( ◡ 𝐹 “ { 𝑗 } ) ⊆ 𝑣 ) |
| 47 |
32 38 46
|
elrabd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ◡ 𝐹 “ 𝑢 ) ⊆ 𝑣 ) ∧ 𝑗 ∈ 𝑢 ) → 𝑗 ∈ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) |
| 48 |
47
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ◡ 𝐹 “ 𝑢 ) ⊆ 𝑣 ) → ( 𝑗 ∈ 𝑢 → 𝑗 ∈ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ) |
| 49 |
48
|
ssrdv |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( ◡ 𝐹 “ 𝑢 ) ⊆ 𝑣 ) → 𝑢 ⊆ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) |
| 50 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ∧ 𝑖 ∈ ( ◡ 𝐹 “ 𝑢 ) ) → 𝑢 ⊆ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) |
| 51 |
7
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
| 52 |
51
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ∧ 𝑖 ∈ ( ◡ 𝐹 “ 𝑢 ) ) → 𝐹 Fn 𝑋 ) |
| 53 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ∧ 𝑖 ∈ ( ◡ 𝐹 “ 𝑢 ) ) → 𝑖 ∈ ( ◡ 𝐹 “ 𝑢 ) ) |
| 54 |
|
elpreima |
⊢ ( 𝐹 Fn 𝑋 → ( 𝑖 ∈ ( ◡ 𝐹 “ 𝑢 ) ↔ ( 𝑖 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑖 ) ∈ 𝑢 ) ) ) |
| 55 |
54
|
biimpa |
⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑖 ∈ ( ◡ 𝐹 “ 𝑢 ) ) → ( 𝑖 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑖 ) ∈ 𝑢 ) ) |
| 56 |
52 53 55
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ∧ 𝑖 ∈ ( ◡ 𝐹 “ 𝑢 ) ) → ( 𝑖 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑖 ) ∈ 𝑢 ) ) |
| 57 |
56
|
simprd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ∧ 𝑖 ∈ ( ◡ 𝐹 “ 𝑢 ) ) → ( 𝐹 ‘ 𝑖 ) ∈ 𝑢 ) |
| 58 |
50 57
|
sseldd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ∧ 𝑖 ∈ ( ◡ 𝐹 “ 𝑢 ) ) → ( 𝐹 ‘ 𝑖 ) ∈ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) |
| 59 |
|
sneq |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑖 ) → { 𝑦 } = { ( 𝐹 ‘ 𝑖 ) } ) |
| 60 |
59
|
imaeq2d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑖 ) → ( ◡ 𝐹 “ { 𝑦 } ) = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑖 ) } ) ) |
| 61 |
60
|
sseq1d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑖 ) → ( ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 ↔ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑖 ) } ) ⊆ 𝑣 ) ) |
| 62 |
61
|
elrab |
⊢ ( ( 𝐹 ‘ 𝑖 ) ∈ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ↔ ( ( 𝐹 ‘ 𝑖 ) ∈ 𝑌 ∧ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑖 ) } ) ⊆ 𝑣 ) ) |
| 63 |
62
|
simprbi |
⊢ ( ( 𝐹 ‘ 𝑖 ) ∈ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } → ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑖 ) } ) ⊆ 𝑣 ) |
| 64 |
58 63
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ∧ 𝑖 ∈ ( ◡ 𝐹 “ 𝑢 ) ) → ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑖 ) } ) ⊆ 𝑣 ) |
| 65 |
56
|
simpld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ∧ 𝑖 ∈ ( ◡ 𝐹 “ 𝑢 ) ) → 𝑖 ∈ 𝑋 ) |
| 66 |
|
eqidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ∧ 𝑖 ∈ ( ◡ 𝐹 “ 𝑢 ) ) → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 𝑖 ) ) |
| 67 |
|
fniniseg |
⊢ ( 𝐹 Fn 𝑋 → ( 𝑖 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑖 ) } ) ↔ ( 𝑖 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 68 |
67
|
biimpar |
⊢ ( ( 𝐹 Fn 𝑋 ∧ ( 𝑖 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 𝑖 ) ) ) → 𝑖 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑖 ) } ) ) |
| 69 |
52 65 66 68
|
syl12anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ∧ 𝑖 ∈ ( ◡ 𝐹 “ 𝑢 ) ) → 𝑖 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑖 ) } ) ) |
| 70 |
64 69
|
sseldd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ∧ 𝑖 ∈ ( ◡ 𝐹 “ 𝑢 ) ) → 𝑖 ∈ 𝑣 ) |
| 71 |
70
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) → ( 𝑖 ∈ ( ◡ 𝐹 “ 𝑢 ) → 𝑖 ∈ 𝑣 ) ) |
| 72 |
71
|
ssrdv |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) → ( ◡ 𝐹 “ 𝑢 ) ⊆ 𝑣 ) |
| 73 |
49 72
|
impbida |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( ( ◡ 𝐹 “ 𝑢 ) ⊆ 𝑣 ↔ 𝑢 ⊆ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ) |
| 74 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑛 = 𝑢 ) → 𝑛 = 𝑢 ) |
| 75 |
74
|
imaeq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑛 = 𝑢 ) → ( ◡ 𝐹 “ 𝑛 ) = ( ◡ 𝐹 “ 𝑢 ) ) |
| 76 |
7 5
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 77 |
|
cnvexg |
⊢ ( 𝐹 ∈ V → ◡ 𝐹 ∈ V ) |
| 78 |
|
imaexg |
⊢ ( ◡ 𝐹 ∈ V → ( ◡ 𝐹 “ 𝑢 ) ∈ V ) |
| 79 |
76 77 78
|
3syl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑢 ) ∈ V ) |
| 80 |
79
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( ◡ 𝐹 “ 𝑢 ) ∈ V ) |
| 81 |
1 75 35 80
|
fvmptd2 |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( 𝐺 ‘ 𝑢 ) = ( ◡ 𝐹 “ 𝑢 ) ) |
| 82 |
81
|
sseq1d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝐺 ‘ 𝑢 ) ⊆ 𝑣 ↔ ( ◡ 𝐹 “ 𝑢 ) ⊆ 𝑣 ) ) |
| 83 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑚 = 𝑣 ) → 𝑚 = 𝑣 ) |
| 84 |
83
|
sseq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑚 = 𝑣 ) → ( ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑚 ↔ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 ) ) |
| 85 |
84
|
rabbidv |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑚 = 𝑣 ) → { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑚 } = { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) |
| 86 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝑣 ∈ ( Base ‘ 𝑊 ) ) |
| 87 |
5 17
|
syl |
⊢ ( 𝜑 → 𝒫 𝑋 ∈ V ) |
| 88 |
87
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝒫 𝑋 ∈ V ) |
| 89 |
88 18
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝒫 𝑋 = ( Base ‘ 𝑊 ) ) |
| 90 |
86 89
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝑣 ∈ 𝒫 𝑋 ) |
| 91 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝑌 ∈ 𝐵 ) |
| 92 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ⊆ 𝑌 |
| 93 |
92
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ⊆ 𝑌 ) |
| 94 |
91 93
|
sselpwd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ∈ 𝒫 𝑌 ) |
| 95 |
2 85 90 94
|
fvmptd2 |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( 𝐻 ‘ 𝑣 ) = { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) |
| 96 |
95
|
sseq2d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑢 ⊆ ( 𝐻 ‘ 𝑣 ) ↔ 𝑢 ⊆ { 𝑦 ∈ 𝑌 ∣ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ) |
| 97 |
73 82 96
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝐺 ‘ 𝑢 ) ⊆ 𝑣 ↔ 𝑢 ⊆ ( 𝐻 ‘ 𝑣 ) ) ) |
| 98 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝐺 : 𝒫 𝑌 ⟶ 𝒫 𝑋 ) |
| 99 |
98 35
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( 𝐺 ‘ 𝑢 ) ∈ 𝒫 𝑋 ) |
| 100 |
|
eqid |
⊢ ( le ‘ 𝑊 ) = ( le ‘ 𝑊 ) |
| 101 |
4 100
|
ipole |
⊢ ( ( 𝒫 𝑋 ∈ V ∧ ( 𝐺 ‘ 𝑢 ) ∈ 𝒫 𝑋 ∧ 𝑣 ∈ 𝒫 𝑋 ) → ( ( 𝐺 ‘ 𝑢 ) ( le ‘ 𝑊 ) 𝑣 ↔ ( 𝐺 ‘ 𝑢 ) ⊆ 𝑣 ) ) |
| 102 |
88 99 90 101
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝐺 ‘ 𝑢 ) ( le ‘ 𝑊 ) 𝑣 ↔ ( 𝐺 ‘ 𝑢 ) ⊆ 𝑣 ) ) |
| 103 |
6 14
|
syl |
⊢ ( 𝜑 → 𝒫 𝑌 ∈ V ) |
| 104 |
103
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝒫 𝑌 ∈ V ) |
| 105 |
26
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝐻 : 𝒫 𝑋 ⟶ 𝒫 𝑌 ) |
| 106 |
105 90
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( 𝐻 ‘ 𝑣 ) ∈ 𝒫 𝑌 ) |
| 107 |
|
eqid |
⊢ ( le ‘ 𝑉 ) = ( le ‘ 𝑉 ) |
| 108 |
3 107
|
ipole |
⊢ ( ( 𝒫 𝑌 ∈ V ∧ 𝑢 ∈ 𝒫 𝑌 ∧ ( 𝐻 ‘ 𝑣 ) ∈ 𝒫 𝑌 ) → ( 𝑢 ( le ‘ 𝑉 ) ( 𝐻 ‘ 𝑣 ) ↔ 𝑢 ⊆ ( 𝐻 ‘ 𝑣 ) ) ) |
| 109 |
104 35 106 108
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑢 ( le ‘ 𝑉 ) ( 𝐻 ‘ 𝑣 ) ↔ 𝑢 ⊆ ( 𝐻 ‘ 𝑣 ) ) ) |
| 110 |
97 102 109
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝐺 ‘ 𝑢 ) ( le ‘ 𝑊 ) 𝑣 ↔ 𝑢 ( le ‘ 𝑉 ) ( 𝐻 ‘ 𝑣 ) ) ) |
| 111 |
110
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑉 ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝐺 ‘ 𝑢 ) ( le ‘ 𝑊 ) 𝑣 ↔ 𝑢 ( le ‘ 𝑉 ) ( 𝐻 ‘ 𝑣 ) ) ) |
| 112 |
111
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑢 ∈ ( Base ‘ 𝑉 ) ∀ 𝑣 ∈ ( Base ‘ 𝑊 ) ( ( 𝐺 ‘ 𝑢 ) ( le ‘ 𝑊 ) 𝑣 ↔ 𝑢 ( le ‘ 𝑉 ) ( 𝐻 ‘ 𝑣 ) ) ) |
| 113 |
|
eqid |
⊢ ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 ) |
| 114 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 115 |
|
eqid |
⊢ ( 𝑉 MGalConn 𝑊 ) = ( 𝑉 MGalConn 𝑊 ) |
| 116 |
3
|
ipopos |
⊢ 𝑉 ∈ Poset |
| 117 |
|
posprs |
⊢ ( 𝑉 ∈ Poset → 𝑉 ∈ Proset ) |
| 118 |
116 117
|
mp1i |
⊢ ( 𝜑 → 𝑉 ∈ Proset ) |
| 119 |
4
|
ipopos |
⊢ 𝑊 ∈ Poset |
| 120 |
|
posprs |
⊢ ( 𝑊 ∈ Poset → 𝑊 ∈ Proset ) |
| 121 |
119 120
|
mp1i |
⊢ ( 𝜑 → 𝑊 ∈ Proset ) |
| 122 |
113 114 107 100 115 118 121
|
mgcval |
⊢ ( 𝜑 → ( 𝐺 ( 𝑉 MGalConn 𝑊 ) 𝐻 ↔ ( ( 𝐺 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑊 ) ∧ 𝐻 : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ 𝑉 ) ) ∧ ∀ 𝑢 ∈ ( Base ‘ 𝑉 ) ∀ 𝑣 ∈ ( Base ‘ 𝑊 ) ( ( 𝐺 ‘ 𝑢 ) ( le ‘ 𝑊 ) 𝑣 ↔ 𝑢 ( le ‘ 𝑉 ) ( 𝐻 ‘ 𝑣 ) ) ) ) ) |
| 123 |
29 112 122
|
mpbir2and |
⊢ ( 𝜑 → 𝐺 ( 𝑉 MGalConn 𝑊 ) 𝐻 ) |