Metamath Proof Explorer


Theorem pwrssmgc

Description: Given a function F , exhibit a Galois connection between subsets of its domain and subsets of its range. (Contributed by Thierry Arnoux, 26-Apr-2024)

Ref Expression
Hypotheses pwrssmgc.1 𝐺 = ( 𝑛 ∈ 𝒫 𝑌 ↦ ( 𝐹𝑛 ) )
pwrssmgc.2 𝐻 = ( 𝑚 ∈ 𝒫 𝑋 ↦ { 𝑦𝑌 ∣ ( 𝐹 “ { 𝑦 } ) ⊆ 𝑚 } )
pwrssmgc.3 𝑉 = ( toInc ‘ 𝒫 𝑌 )
pwrssmgc.4 𝑊 = ( toInc ‘ 𝒫 𝑋 )
pwrssmgc.5 ( 𝜑𝑋𝐴 )
pwrssmgc.6 ( 𝜑𝑌𝐵 )
pwrssmgc.7 ( 𝜑𝐹 : 𝑋𝑌 )
Assertion pwrssmgc ( 𝜑𝐺 ( 𝑉 MGalConn 𝑊 ) 𝐻 )

Proof

Step Hyp Ref Expression
1 pwrssmgc.1 𝐺 = ( 𝑛 ∈ 𝒫 𝑌 ↦ ( 𝐹𝑛 ) )
2 pwrssmgc.2 𝐻 = ( 𝑚 ∈ 𝒫 𝑋 ↦ { 𝑦𝑌 ∣ ( 𝐹 “ { 𝑦 } ) ⊆ 𝑚 } )
3 pwrssmgc.3 𝑉 = ( toInc ‘ 𝒫 𝑌 )
4 pwrssmgc.4 𝑊 = ( toInc ‘ 𝒫 𝑋 )
5 pwrssmgc.5 ( 𝜑𝑋𝐴 )
6 pwrssmgc.6 ( 𝜑𝑌𝐵 )
7 pwrssmgc.7 ( 𝜑𝐹 : 𝑋𝑌 )
8 5 adantr ( ( 𝜑𝑛 ∈ 𝒫 𝑌 ) → 𝑋𝐴 )
9 cnvimass ( 𝐹𝑛 ) ⊆ dom 𝐹
10 9 7 fssdm ( 𝜑 → ( 𝐹𝑛 ) ⊆ 𝑋 )
11 10 adantr ( ( 𝜑𝑛 ∈ 𝒫 𝑌 ) → ( 𝐹𝑛 ) ⊆ 𝑋 )
12 8 11 sselpwd ( ( 𝜑𝑛 ∈ 𝒫 𝑌 ) → ( 𝐹𝑛 ) ∈ 𝒫 𝑋 )
13 12 1 fmptd ( 𝜑𝐺 : 𝒫 𝑌 ⟶ 𝒫 𝑋 )
14 pwexg ( 𝑌𝐵 → 𝒫 𝑌 ∈ V )
15 3 ipobas ( 𝒫 𝑌 ∈ V → 𝒫 𝑌 = ( Base ‘ 𝑉 ) )
16 6 14 15 3syl ( 𝜑 → 𝒫 𝑌 = ( Base ‘ 𝑉 ) )
17 pwexg ( 𝑋𝐴 → 𝒫 𝑋 ∈ V )
18 4 ipobas ( 𝒫 𝑋 ∈ V → 𝒫 𝑋 = ( Base ‘ 𝑊 ) )
19 5 17 18 3syl ( 𝜑 → 𝒫 𝑋 = ( Base ‘ 𝑊 ) )
20 16 19 feq23d ( 𝜑 → ( 𝐺 : 𝒫 𝑌 ⟶ 𝒫 𝑋𝐺 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑊 ) ) )
21 13 20 mpbid ( 𝜑𝐺 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑊 ) )
22 6 adantr ( ( 𝜑𝑚 ∈ 𝒫 𝑋 ) → 𝑌𝐵 )
23 ssrab2 { 𝑦𝑌 ∣ ( 𝐹 “ { 𝑦 } ) ⊆ 𝑚 } ⊆ 𝑌
24 23 a1i ( ( 𝜑𝑚 ∈ 𝒫 𝑋 ) → { 𝑦𝑌 ∣ ( 𝐹 “ { 𝑦 } ) ⊆ 𝑚 } ⊆ 𝑌 )
25 22 24 sselpwd ( ( 𝜑𝑚 ∈ 𝒫 𝑋 ) → { 𝑦𝑌 ∣ ( 𝐹 “ { 𝑦 } ) ⊆ 𝑚 } ∈ 𝒫 𝑌 )
26 25 2 fmptd ( 𝜑𝐻 : 𝒫 𝑋 ⟶ 𝒫 𝑌 )
27 19 16 feq23d ( 𝜑 → ( 𝐻 : 𝒫 𝑋 ⟶ 𝒫 𝑌𝐻 : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ 𝑉 ) ) )
28 26 27 mpbid ( 𝜑𝐻 : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ 𝑉 ) )
29 21 28 jca ( 𝜑 → ( 𝐺 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑊 ) ∧ 𝐻 : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ 𝑉 ) ) )
30 sneq ( 𝑦 = 𝑗 → { 𝑦 } = { 𝑗 } )
31 30 imaeq2d ( 𝑦 = 𝑗 → ( 𝐹 “ { 𝑦 } ) = ( 𝐹 “ { 𝑗 } ) )
32 31 sseq1d ( 𝑦 = 𝑗 → ( ( 𝐹 “ { 𝑦 } ) ⊆ 𝑣 ↔ ( 𝐹 “ { 𝑗 } ) ⊆ 𝑣 ) )
33 simplr ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝑢 ∈ ( Base ‘ 𝑉 ) )
34 16 ad2antrr ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝒫 𝑌 = ( Base ‘ 𝑉 ) )
35 33 34 eleqtrrd ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝑢 ∈ 𝒫 𝑌 )
36 35 adantr ( ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝐹𝑢 ) ⊆ 𝑣 ) → 𝑢 ∈ 𝒫 𝑌 )
37 36 elpwid ( ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝐹𝑢 ) ⊆ 𝑣 ) → 𝑢𝑌 )
38 37 sselda ( ( ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝐹𝑢 ) ⊆ 𝑣 ) ∧ 𝑗𝑢 ) → 𝑗𝑌 )
39 7 ffund ( 𝜑 → Fun 𝐹 )
40 39 ad4antr ( ( ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝐹𝑢 ) ⊆ 𝑣 ) ∧ 𝑗𝑢 ) → Fun 𝐹 )
41 snssi ( 𝑗𝑢 → { 𝑗 } ⊆ 𝑢 )
42 41 adantl ( ( ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝐹𝑢 ) ⊆ 𝑣 ) ∧ 𝑗𝑢 ) → { 𝑗 } ⊆ 𝑢 )
43 sspreima ( ( Fun 𝐹 ∧ { 𝑗 } ⊆ 𝑢 ) → ( 𝐹 “ { 𝑗 } ) ⊆ ( 𝐹𝑢 ) )
44 40 42 43 syl2anc ( ( ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝐹𝑢 ) ⊆ 𝑣 ) ∧ 𝑗𝑢 ) → ( 𝐹 “ { 𝑗 } ) ⊆ ( 𝐹𝑢 ) )
45 simplr ( ( ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝐹𝑢 ) ⊆ 𝑣 ) ∧ 𝑗𝑢 ) → ( 𝐹𝑢 ) ⊆ 𝑣 )
46 44 45 sstrd ( ( ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝐹𝑢 ) ⊆ 𝑣 ) ∧ 𝑗𝑢 ) → ( 𝐹 “ { 𝑗 } ) ⊆ 𝑣 )
47 32 38 46 elrabd ( ( ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝐹𝑢 ) ⊆ 𝑣 ) ∧ 𝑗𝑢 ) → 𝑗 ∈ { 𝑦𝑌 ∣ ( 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } )
48 47 ex ( ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝐹𝑢 ) ⊆ 𝑣 ) → ( 𝑗𝑢𝑗 ∈ { 𝑦𝑌 ∣ ( 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) )
49 48 ssrdv ( ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝐹𝑢 ) ⊆ 𝑣 ) → 𝑢 ⊆ { 𝑦𝑌 ∣ ( 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } )
50 simplr ( ( ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦𝑌 ∣ ( 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ∧ 𝑖 ∈ ( 𝐹𝑢 ) ) → 𝑢 ⊆ { 𝑦𝑌 ∣ ( 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } )
51 7 ffnd ( 𝜑𝐹 Fn 𝑋 )
52 51 ad4antr ( ( ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦𝑌 ∣ ( 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ∧ 𝑖 ∈ ( 𝐹𝑢 ) ) → 𝐹 Fn 𝑋 )
53 simpr ( ( ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦𝑌 ∣ ( 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ∧ 𝑖 ∈ ( 𝐹𝑢 ) ) → 𝑖 ∈ ( 𝐹𝑢 ) )
54 elpreima ( 𝐹 Fn 𝑋 → ( 𝑖 ∈ ( 𝐹𝑢 ) ↔ ( 𝑖𝑋 ∧ ( 𝐹𝑖 ) ∈ 𝑢 ) ) )
55 54 biimpa ( ( 𝐹 Fn 𝑋𝑖 ∈ ( 𝐹𝑢 ) ) → ( 𝑖𝑋 ∧ ( 𝐹𝑖 ) ∈ 𝑢 ) )
56 52 53 55 syl2anc ( ( ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦𝑌 ∣ ( 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ∧ 𝑖 ∈ ( 𝐹𝑢 ) ) → ( 𝑖𝑋 ∧ ( 𝐹𝑖 ) ∈ 𝑢 ) )
57 56 simprd ( ( ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦𝑌 ∣ ( 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ∧ 𝑖 ∈ ( 𝐹𝑢 ) ) → ( 𝐹𝑖 ) ∈ 𝑢 )
58 50 57 sseldd ( ( ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦𝑌 ∣ ( 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ∧ 𝑖 ∈ ( 𝐹𝑢 ) ) → ( 𝐹𝑖 ) ∈ { 𝑦𝑌 ∣ ( 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } )
59 sneq ( 𝑦 = ( 𝐹𝑖 ) → { 𝑦 } = { ( 𝐹𝑖 ) } )
60 59 imaeq2d ( 𝑦 = ( 𝐹𝑖 ) → ( 𝐹 “ { 𝑦 } ) = ( 𝐹 “ { ( 𝐹𝑖 ) } ) )
61 60 sseq1d ( 𝑦 = ( 𝐹𝑖 ) → ( ( 𝐹 “ { 𝑦 } ) ⊆ 𝑣 ↔ ( 𝐹 “ { ( 𝐹𝑖 ) } ) ⊆ 𝑣 ) )
62 61 elrab ( ( 𝐹𝑖 ) ∈ { 𝑦𝑌 ∣ ( 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ↔ ( ( 𝐹𝑖 ) ∈ 𝑌 ∧ ( 𝐹 “ { ( 𝐹𝑖 ) } ) ⊆ 𝑣 ) )
63 62 simprbi ( ( 𝐹𝑖 ) ∈ { 𝑦𝑌 ∣ ( 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } → ( 𝐹 “ { ( 𝐹𝑖 ) } ) ⊆ 𝑣 )
64 58 63 syl ( ( ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦𝑌 ∣ ( 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ∧ 𝑖 ∈ ( 𝐹𝑢 ) ) → ( 𝐹 “ { ( 𝐹𝑖 ) } ) ⊆ 𝑣 )
65 56 simpld ( ( ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦𝑌 ∣ ( 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ∧ 𝑖 ∈ ( 𝐹𝑢 ) ) → 𝑖𝑋 )
66 eqidd ( ( ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦𝑌 ∣ ( 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ∧ 𝑖 ∈ ( 𝐹𝑢 ) ) → ( 𝐹𝑖 ) = ( 𝐹𝑖 ) )
67 fniniseg ( 𝐹 Fn 𝑋 → ( 𝑖 ∈ ( 𝐹 “ { ( 𝐹𝑖 ) } ) ↔ ( 𝑖𝑋 ∧ ( 𝐹𝑖 ) = ( 𝐹𝑖 ) ) ) )
68 67 biimpar ( ( 𝐹 Fn 𝑋 ∧ ( 𝑖𝑋 ∧ ( 𝐹𝑖 ) = ( 𝐹𝑖 ) ) ) → 𝑖 ∈ ( 𝐹 “ { ( 𝐹𝑖 ) } ) )
69 52 65 66 68 syl12anc ( ( ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦𝑌 ∣ ( 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ∧ 𝑖 ∈ ( 𝐹𝑢 ) ) → 𝑖 ∈ ( 𝐹 “ { ( 𝐹𝑖 ) } ) )
70 64 69 sseldd ( ( ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦𝑌 ∣ ( 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) ∧ 𝑖 ∈ ( 𝐹𝑢 ) ) → 𝑖𝑣 )
71 70 ex ( ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦𝑌 ∣ ( 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) → ( 𝑖 ∈ ( 𝐹𝑢 ) → 𝑖𝑣 ) )
72 71 ssrdv ( ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑢 ⊆ { 𝑦𝑌 ∣ ( 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) → ( 𝐹𝑢 ) ⊆ 𝑣 )
73 49 72 impbida ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝐹𝑢 ) ⊆ 𝑣𝑢 ⊆ { 𝑦𝑌 ∣ ( 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) )
74 simpr ( ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑛 = 𝑢 ) → 𝑛 = 𝑢 )
75 74 imaeq2d ( ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑛 = 𝑢 ) → ( 𝐹𝑛 ) = ( 𝐹𝑢 ) )
76 7 5 fexd ( 𝜑𝐹 ∈ V )
77 cnvexg ( 𝐹 ∈ V → 𝐹 ∈ V )
78 imaexg ( 𝐹 ∈ V → ( 𝐹𝑢 ) ∈ V )
79 76 77 78 3syl ( 𝜑 → ( 𝐹𝑢 ) ∈ V )
80 79 ad2antrr ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( 𝐹𝑢 ) ∈ V )
81 1 75 35 80 fvmptd2 ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( 𝐺𝑢 ) = ( 𝐹𝑢 ) )
82 81 sseq1d ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝐺𝑢 ) ⊆ 𝑣 ↔ ( 𝐹𝑢 ) ⊆ 𝑣 ) )
83 simpr ( ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑚 = 𝑣 ) → 𝑚 = 𝑣 )
84 83 sseq2d ( ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑚 = 𝑣 ) → ( ( 𝐹 “ { 𝑦 } ) ⊆ 𝑚 ↔ ( 𝐹 “ { 𝑦 } ) ⊆ 𝑣 ) )
85 84 rabbidv ( ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑚 = 𝑣 ) → { 𝑦𝑌 ∣ ( 𝐹 “ { 𝑦 } ) ⊆ 𝑚 } = { 𝑦𝑌 ∣ ( 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } )
86 simpr ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝑣 ∈ ( Base ‘ 𝑊 ) )
87 5 17 syl ( 𝜑 → 𝒫 𝑋 ∈ V )
88 87 ad2antrr ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝒫 𝑋 ∈ V )
89 88 18 syl ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝒫 𝑋 = ( Base ‘ 𝑊 ) )
90 86 89 eleqtrrd ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝑣 ∈ 𝒫 𝑋 )
91 6 ad2antrr ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝑌𝐵 )
92 ssrab2 { 𝑦𝑌 ∣ ( 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ⊆ 𝑌
93 92 a1i ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → { 𝑦𝑌 ∣ ( 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ⊆ 𝑌 )
94 91 93 sselpwd ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → { 𝑦𝑌 ∣ ( 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ∈ 𝒫 𝑌 )
95 2 85 90 94 fvmptd2 ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( 𝐻𝑣 ) = { 𝑦𝑌 ∣ ( 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } )
96 95 sseq2d ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑢 ⊆ ( 𝐻𝑣 ) ↔ 𝑢 ⊆ { 𝑦𝑌 ∣ ( 𝐹 “ { 𝑦 } ) ⊆ 𝑣 } ) )
97 73 82 96 3bitr4d ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝐺𝑢 ) ⊆ 𝑣𝑢 ⊆ ( 𝐻𝑣 ) ) )
98 13 ad2antrr ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝐺 : 𝒫 𝑌 ⟶ 𝒫 𝑋 )
99 98 35 ffvelrnd ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( 𝐺𝑢 ) ∈ 𝒫 𝑋 )
100 eqid ( le ‘ 𝑊 ) = ( le ‘ 𝑊 )
101 4 100 ipole ( ( 𝒫 𝑋 ∈ V ∧ ( 𝐺𝑢 ) ∈ 𝒫 𝑋𝑣 ∈ 𝒫 𝑋 ) → ( ( 𝐺𝑢 ) ( le ‘ 𝑊 ) 𝑣 ↔ ( 𝐺𝑢 ) ⊆ 𝑣 ) )
102 88 99 90 101 syl3anc ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝐺𝑢 ) ( le ‘ 𝑊 ) 𝑣 ↔ ( 𝐺𝑢 ) ⊆ 𝑣 ) )
103 6 14 syl ( 𝜑 → 𝒫 𝑌 ∈ V )
104 103 ad2antrr ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝒫 𝑌 ∈ V )
105 26 ad2antrr ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝐻 : 𝒫 𝑋 ⟶ 𝒫 𝑌 )
106 105 90 ffvelrnd ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( 𝐻𝑣 ) ∈ 𝒫 𝑌 )
107 eqid ( le ‘ 𝑉 ) = ( le ‘ 𝑉 )
108 3 107 ipole ( ( 𝒫 𝑌 ∈ V ∧ 𝑢 ∈ 𝒫 𝑌 ∧ ( 𝐻𝑣 ) ∈ 𝒫 𝑌 ) → ( 𝑢 ( le ‘ 𝑉 ) ( 𝐻𝑣 ) ↔ 𝑢 ⊆ ( 𝐻𝑣 ) ) )
109 104 35 106 108 syl3anc ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑢 ( le ‘ 𝑉 ) ( 𝐻𝑣 ) ↔ 𝑢 ⊆ ( 𝐻𝑣 ) ) )
110 97 102 109 3bitr4d ( ( ( 𝜑𝑢 ∈ ( Base ‘ 𝑉 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝐺𝑢 ) ( le ‘ 𝑊 ) 𝑣𝑢 ( le ‘ 𝑉 ) ( 𝐻𝑣 ) ) )
111 110 anasss ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑉 ) ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝐺𝑢 ) ( le ‘ 𝑊 ) 𝑣𝑢 ( le ‘ 𝑉 ) ( 𝐻𝑣 ) ) )
112 111 ralrimivva ( 𝜑 → ∀ 𝑢 ∈ ( Base ‘ 𝑉 ) ∀ 𝑣 ∈ ( Base ‘ 𝑊 ) ( ( 𝐺𝑢 ) ( le ‘ 𝑊 ) 𝑣𝑢 ( le ‘ 𝑉 ) ( 𝐻𝑣 ) ) )
113 eqid ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 )
114 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
115 eqid ( 𝑉 MGalConn 𝑊 ) = ( 𝑉 MGalConn 𝑊 )
116 3 ipopos 𝑉 ∈ Poset
117 posprs ( 𝑉 ∈ Poset → 𝑉 ∈ Proset )
118 116 117 mp1i ( 𝜑𝑉 ∈ Proset )
119 4 ipopos 𝑊 ∈ Poset
120 posprs ( 𝑊 ∈ Poset → 𝑊 ∈ Proset )
121 119 120 mp1i ( 𝜑𝑊 ∈ Proset )
122 113 114 107 100 115 118 121 mgcval ( 𝜑 → ( 𝐺 ( 𝑉 MGalConn 𝑊 ) 𝐻 ↔ ( ( 𝐺 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑊 ) ∧ 𝐻 : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ 𝑉 ) ) ∧ ∀ 𝑢 ∈ ( Base ‘ 𝑉 ) ∀ 𝑣 ∈ ( Base ‘ 𝑊 ) ( ( 𝐺𝑢 ) ( le ‘ 𝑊 ) 𝑣𝑢 ( le ‘ 𝑉 ) ( 𝐻𝑣 ) ) ) ) )
123 29 112 122 mpbir2and ( 𝜑𝐺 ( 𝑉 MGalConn 𝑊 ) 𝐻 )