Metamath Proof Explorer


Theorem pwrssmgc

Description: Given a function F , exhibit a Galois connection between subsets of its domain and subsets of its range. (Contributed by Thierry Arnoux, 26-Apr-2024)

Ref Expression
Hypotheses pwrssmgc.1 G=n𝒫YF-1n
pwrssmgc.2 H=m𝒫XyY|F-1ym
pwrssmgc.3 V=toInc𝒫Y
pwrssmgc.4 W=toInc𝒫X
pwrssmgc.5 φXA
pwrssmgc.6 φYB
pwrssmgc.7 φF:XY
Assertion pwrssmgc Could not format assertion : No typesetting found for |- ( ph -> G ( V MGalConn W ) H ) with typecode |-

Proof

Step Hyp Ref Expression
1 pwrssmgc.1 G=n𝒫YF-1n
2 pwrssmgc.2 H=m𝒫XyY|F-1ym
3 pwrssmgc.3 V=toInc𝒫Y
4 pwrssmgc.4 W=toInc𝒫X
5 pwrssmgc.5 φXA
6 pwrssmgc.6 φYB
7 pwrssmgc.7 φF:XY
8 5 adantr φn𝒫YXA
9 cnvimass F-1ndomF
10 9 7 fssdm φF-1nX
11 10 adantr φn𝒫YF-1nX
12 8 11 sselpwd φn𝒫YF-1n𝒫X
13 12 1 fmptd φG:𝒫Y𝒫X
14 pwexg YB𝒫YV
15 3 ipobas 𝒫YV𝒫Y=BaseV
16 6 14 15 3syl φ𝒫Y=BaseV
17 pwexg XA𝒫XV
18 4 ipobas 𝒫XV𝒫X=BaseW
19 5 17 18 3syl φ𝒫X=BaseW
20 16 19 feq23d φG:𝒫Y𝒫XG:BaseVBaseW
21 13 20 mpbid φG:BaseVBaseW
22 6 adantr φm𝒫XYB
23 ssrab2 yY|F-1ymY
24 23 a1i φm𝒫XyY|F-1ymY
25 22 24 sselpwd φm𝒫XyY|F-1ym𝒫Y
26 25 2 fmptd φH:𝒫X𝒫Y
27 19 16 feq23d φH:𝒫X𝒫YH:BaseWBaseV
28 26 27 mpbid φH:BaseWBaseV
29 21 28 jca φG:BaseVBaseWH:BaseWBaseV
30 sneq y=jy=j
31 30 imaeq2d y=jF-1y=F-1j
32 31 sseq1d y=jF-1yvF-1jv
33 simplr φuBaseVvBaseWuBaseV
34 16 ad2antrr φuBaseVvBaseW𝒫Y=BaseV
35 33 34 eleqtrrd φuBaseVvBaseWu𝒫Y
36 35 adantr φuBaseVvBaseWF-1uvu𝒫Y
37 36 elpwid φuBaseVvBaseWF-1uvuY
38 37 sselda φuBaseVvBaseWF-1uvjujY
39 7 ffund φFunF
40 39 ad4antr φuBaseVvBaseWF-1uvjuFunF
41 snssi juju
42 41 adantl φuBaseVvBaseWF-1uvjuju
43 sspreima FunFjuF-1jF-1u
44 40 42 43 syl2anc φuBaseVvBaseWF-1uvjuF-1jF-1u
45 simplr φuBaseVvBaseWF-1uvjuF-1uv
46 44 45 sstrd φuBaseVvBaseWF-1uvjuF-1jv
47 32 38 46 elrabd φuBaseVvBaseWF-1uvjujyY|F-1yv
48 47 ex φuBaseVvBaseWF-1uvjujyY|F-1yv
49 48 ssrdv φuBaseVvBaseWF-1uvuyY|F-1yv
50 simplr φuBaseVvBaseWuyY|F-1yviF-1uuyY|F-1yv
51 7 ffnd φFFnX
52 51 ad4antr φuBaseVvBaseWuyY|F-1yviF-1uFFnX
53 simpr φuBaseVvBaseWuyY|F-1yviF-1uiF-1u
54 elpreima FFnXiF-1uiXFiu
55 54 biimpa FFnXiF-1uiXFiu
56 52 53 55 syl2anc φuBaseVvBaseWuyY|F-1yviF-1uiXFiu
57 56 simprd φuBaseVvBaseWuyY|F-1yviF-1uFiu
58 50 57 sseldd φuBaseVvBaseWuyY|F-1yviF-1uFiyY|F-1yv
59 sneq y=Fiy=Fi
60 59 imaeq2d y=FiF-1y=F-1Fi
61 60 sseq1d y=FiF-1yvF-1Fiv
62 61 elrab FiyY|F-1yvFiYF-1Fiv
63 62 simprbi FiyY|F-1yvF-1Fiv
64 58 63 syl φuBaseVvBaseWuyY|F-1yviF-1uF-1Fiv
65 56 simpld φuBaseVvBaseWuyY|F-1yviF-1uiX
66 eqidd φuBaseVvBaseWuyY|F-1yviF-1uFi=Fi
67 fniniseg FFnXiF-1FiiXFi=Fi
68 67 biimpar FFnXiXFi=FiiF-1Fi
69 52 65 66 68 syl12anc φuBaseVvBaseWuyY|F-1yviF-1uiF-1Fi
70 64 69 sseldd φuBaseVvBaseWuyY|F-1yviF-1uiv
71 70 ex φuBaseVvBaseWuyY|F-1yviF-1uiv
72 71 ssrdv φuBaseVvBaseWuyY|F-1yvF-1uv
73 49 72 impbida φuBaseVvBaseWF-1uvuyY|F-1yv
74 simpr φuBaseVvBaseWn=un=u
75 74 imaeq2d φuBaseVvBaseWn=uF-1n=F-1u
76 7 5 fexd φFV
77 cnvexg FVF-1V
78 imaexg F-1VF-1uV
79 76 77 78 3syl φF-1uV
80 79 ad2antrr φuBaseVvBaseWF-1uV
81 1 75 35 80 fvmptd2 φuBaseVvBaseWGu=F-1u
82 81 sseq1d φuBaseVvBaseWGuvF-1uv
83 simpr φuBaseVvBaseWm=vm=v
84 83 sseq2d φuBaseVvBaseWm=vF-1ymF-1yv
85 84 rabbidv φuBaseVvBaseWm=vyY|F-1ym=yY|F-1yv
86 simpr φuBaseVvBaseWvBaseW
87 5 17 syl φ𝒫XV
88 87 ad2antrr φuBaseVvBaseW𝒫XV
89 88 18 syl φuBaseVvBaseW𝒫X=BaseW
90 86 89 eleqtrrd φuBaseVvBaseWv𝒫X
91 6 ad2antrr φuBaseVvBaseWYB
92 ssrab2 yY|F-1yvY
93 92 a1i φuBaseVvBaseWyY|F-1yvY
94 91 93 sselpwd φuBaseVvBaseWyY|F-1yv𝒫Y
95 2 85 90 94 fvmptd2 φuBaseVvBaseWHv=yY|F-1yv
96 95 sseq2d φuBaseVvBaseWuHvuyY|F-1yv
97 73 82 96 3bitr4d φuBaseVvBaseWGuvuHv
98 13 ad2antrr φuBaseVvBaseWG:𝒫Y𝒫X
99 98 35 ffvelcdmd φuBaseVvBaseWGu𝒫X
100 eqid W=W
101 4 100 ipole 𝒫XVGu𝒫Xv𝒫XGuWvGuv
102 88 99 90 101 syl3anc φuBaseVvBaseWGuWvGuv
103 6 14 syl φ𝒫YV
104 103 ad2antrr φuBaseVvBaseW𝒫YV
105 26 ad2antrr φuBaseVvBaseWH:𝒫X𝒫Y
106 105 90 ffvelcdmd φuBaseVvBaseWHv𝒫Y
107 eqid V=V
108 3 107 ipole 𝒫YVu𝒫YHv𝒫YuVHvuHv
109 104 35 106 108 syl3anc φuBaseVvBaseWuVHvuHv
110 97 102 109 3bitr4d φuBaseVvBaseWGuWvuVHv
111 110 anasss φuBaseVvBaseWGuWvuVHv
112 111 ralrimivva φuBaseVvBaseWGuWvuVHv
113 eqid BaseV=BaseV
114 eqid BaseW=BaseW
115 eqid Could not format ( V MGalConn W ) = ( V MGalConn W ) : No typesetting found for |- ( V MGalConn W ) = ( V MGalConn W ) with typecode |-
116 3 ipopos VPoset
117 posprs VPosetVProset
118 116 117 mp1i φVProset
119 4 ipopos WPoset
120 posprs WPosetWProset
121 119 120 mp1i φWProset
122 113 114 107 100 115 118 121 mgcval Could not format ( ph -> ( G ( V MGalConn W ) H <-> ( ( G : ( Base ` V ) --> ( Base ` W ) /\ H : ( Base ` W ) --> ( Base ` V ) ) /\ A. u e. ( Base ` V ) A. v e. ( Base ` W ) ( ( G ` u ) ( le ` W ) v <-> u ( le ` V ) ( H ` v ) ) ) ) ) : No typesetting found for |- ( ph -> ( G ( V MGalConn W ) H <-> ( ( G : ( Base ` V ) --> ( Base ` W ) /\ H : ( Base ` W ) --> ( Base ` V ) ) /\ A. u e. ( Base ` V ) A. v e. ( Base ` W ) ( ( G ` u ) ( le ` W ) v <-> u ( le ` V ) ( H ` v ) ) ) ) ) with typecode |-
123 29 112 122 mpbir2and Could not format ( ph -> G ( V MGalConn W ) H ) : No typesetting found for |- ( ph -> G ( V MGalConn W ) H ) with typecode |-