| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwrssmgc.1 |
|- G = ( n e. ~P Y |-> ( `' F " n ) ) |
| 2 |
|
pwrssmgc.2 |
|- H = ( m e. ~P X |-> { y e. Y | ( `' F " { y } ) C_ m } ) |
| 3 |
|
pwrssmgc.3 |
|- V = ( toInc ` ~P Y ) |
| 4 |
|
pwrssmgc.4 |
|- W = ( toInc ` ~P X ) |
| 5 |
|
pwrssmgc.5 |
|- ( ph -> X e. A ) |
| 6 |
|
pwrssmgc.6 |
|- ( ph -> Y e. B ) |
| 7 |
|
pwrssmgc.7 |
|- ( ph -> F : X --> Y ) |
| 8 |
5
|
adantr |
|- ( ( ph /\ n e. ~P Y ) -> X e. A ) |
| 9 |
|
cnvimass |
|- ( `' F " n ) C_ dom F |
| 10 |
9 7
|
fssdm |
|- ( ph -> ( `' F " n ) C_ X ) |
| 11 |
10
|
adantr |
|- ( ( ph /\ n e. ~P Y ) -> ( `' F " n ) C_ X ) |
| 12 |
8 11
|
sselpwd |
|- ( ( ph /\ n e. ~P Y ) -> ( `' F " n ) e. ~P X ) |
| 13 |
12 1
|
fmptd |
|- ( ph -> G : ~P Y --> ~P X ) |
| 14 |
|
pwexg |
|- ( Y e. B -> ~P Y e. _V ) |
| 15 |
3
|
ipobas |
|- ( ~P Y e. _V -> ~P Y = ( Base ` V ) ) |
| 16 |
6 14 15
|
3syl |
|- ( ph -> ~P Y = ( Base ` V ) ) |
| 17 |
|
pwexg |
|- ( X e. A -> ~P X e. _V ) |
| 18 |
4
|
ipobas |
|- ( ~P X e. _V -> ~P X = ( Base ` W ) ) |
| 19 |
5 17 18
|
3syl |
|- ( ph -> ~P X = ( Base ` W ) ) |
| 20 |
16 19
|
feq23d |
|- ( ph -> ( G : ~P Y --> ~P X <-> G : ( Base ` V ) --> ( Base ` W ) ) ) |
| 21 |
13 20
|
mpbid |
|- ( ph -> G : ( Base ` V ) --> ( Base ` W ) ) |
| 22 |
6
|
adantr |
|- ( ( ph /\ m e. ~P X ) -> Y e. B ) |
| 23 |
|
ssrab2 |
|- { y e. Y | ( `' F " { y } ) C_ m } C_ Y |
| 24 |
23
|
a1i |
|- ( ( ph /\ m e. ~P X ) -> { y e. Y | ( `' F " { y } ) C_ m } C_ Y ) |
| 25 |
22 24
|
sselpwd |
|- ( ( ph /\ m e. ~P X ) -> { y e. Y | ( `' F " { y } ) C_ m } e. ~P Y ) |
| 26 |
25 2
|
fmptd |
|- ( ph -> H : ~P X --> ~P Y ) |
| 27 |
19 16
|
feq23d |
|- ( ph -> ( H : ~P X --> ~P Y <-> H : ( Base ` W ) --> ( Base ` V ) ) ) |
| 28 |
26 27
|
mpbid |
|- ( ph -> H : ( Base ` W ) --> ( Base ` V ) ) |
| 29 |
21 28
|
jca |
|- ( ph -> ( G : ( Base ` V ) --> ( Base ` W ) /\ H : ( Base ` W ) --> ( Base ` V ) ) ) |
| 30 |
|
sneq |
|- ( y = j -> { y } = { j } ) |
| 31 |
30
|
imaeq2d |
|- ( y = j -> ( `' F " { y } ) = ( `' F " { j } ) ) |
| 32 |
31
|
sseq1d |
|- ( y = j -> ( ( `' F " { y } ) C_ v <-> ( `' F " { j } ) C_ v ) ) |
| 33 |
|
simplr |
|- ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) -> u e. ( Base ` V ) ) |
| 34 |
16
|
ad2antrr |
|- ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) -> ~P Y = ( Base ` V ) ) |
| 35 |
33 34
|
eleqtrrd |
|- ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) -> u e. ~P Y ) |
| 36 |
35
|
adantr |
|- ( ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) /\ ( `' F " u ) C_ v ) -> u e. ~P Y ) |
| 37 |
36
|
elpwid |
|- ( ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) /\ ( `' F " u ) C_ v ) -> u C_ Y ) |
| 38 |
37
|
sselda |
|- ( ( ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) /\ ( `' F " u ) C_ v ) /\ j e. u ) -> j e. Y ) |
| 39 |
7
|
ffund |
|- ( ph -> Fun F ) |
| 40 |
39
|
ad4antr |
|- ( ( ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) /\ ( `' F " u ) C_ v ) /\ j e. u ) -> Fun F ) |
| 41 |
|
snssi |
|- ( j e. u -> { j } C_ u ) |
| 42 |
41
|
adantl |
|- ( ( ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) /\ ( `' F " u ) C_ v ) /\ j e. u ) -> { j } C_ u ) |
| 43 |
|
sspreima |
|- ( ( Fun F /\ { j } C_ u ) -> ( `' F " { j } ) C_ ( `' F " u ) ) |
| 44 |
40 42 43
|
syl2anc |
|- ( ( ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) /\ ( `' F " u ) C_ v ) /\ j e. u ) -> ( `' F " { j } ) C_ ( `' F " u ) ) |
| 45 |
|
simplr |
|- ( ( ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) /\ ( `' F " u ) C_ v ) /\ j e. u ) -> ( `' F " u ) C_ v ) |
| 46 |
44 45
|
sstrd |
|- ( ( ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) /\ ( `' F " u ) C_ v ) /\ j e. u ) -> ( `' F " { j } ) C_ v ) |
| 47 |
32 38 46
|
elrabd |
|- ( ( ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) /\ ( `' F " u ) C_ v ) /\ j e. u ) -> j e. { y e. Y | ( `' F " { y } ) C_ v } ) |
| 48 |
47
|
ex |
|- ( ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) /\ ( `' F " u ) C_ v ) -> ( j e. u -> j e. { y e. Y | ( `' F " { y } ) C_ v } ) ) |
| 49 |
48
|
ssrdv |
|- ( ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) /\ ( `' F " u ) C_ v ) -> u C_ { y e. Y | ( `' F " { y } ) C_ v } ) |
| 50 |
|
simplr |
|- ( ( ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) /\ u C_ { y e. Y | ( `' F " { y } ) C_ v } ) /\ i e. ( `' F " u ) ) -> u C_ { y e. Y | ( `' F " { y } ) C_ v } ) |
| 51 |
7
|
ffnd |
|- ( ph -> F Fn X ) |
| 52 |
51
|
ad4antr |
|- ( ( ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) /\ u C_ { y e. Y | ( `' F " { y } ) C_ v } ) /\ i e. ( `' F " u ) ) -> F Fn X ) |
| 53 |
|
simpr |
|- ( ( ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) /\ u C_ { y e. Y | ( `' F " { y } ) C_ v } ) /\ i e. ( `' F " u ) ) -> i e. ( `' F " u ) ) |
| 54 |
|
elpreima |
|- ( F Fn X -> ( i e. ( `' F " u ) <-> ( i e. X /\ ( F ` i ) e. u ) ) ) |
| 55 |
54
|
biimpa |
|- ( ( F Fn X /\ i e. ( `' F " u ) ) -> ( i e. X /\ ( F ` i ) e. u ) ) |
| 56 |
52 53 55
|
syl2anc |
|- ( ( ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) /\ u C_ { y e. Y | ( `' F " { y } ) C_ v } ) /\ i e. ( `' F " u ) ) -> ( i e. X /\ ( F ` i ) e. u ) ) |
| 57 |
56
|
simprd |
|- ( ( ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) /\ u C_ { y e. Y | ( `' F " { y } ) C_ v } ) /\ i e. ( `' F " u ) ) -> ( F ` i ) e. u ) |
| 58 |
50 57
|
sseldd |
|- ( ( ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) /\ u C_ { y e. Y | ( `' F " { y } ) C_ v } ) /\ i e. ( `' F " u ) ) -> ( F ` i ) e. { y e. Y | ( `' F " { y } ) C_ v } ) |
| 59 |
|
sneq |
|- ( y = ( F ` i ) -> { y } = { ( F ` i ) } ) |
| 60 |
59
|
imaeq2d |
|- ( y = ( F ` i ) -> ( `' F " { y } ) = ( `' F " { ( F ` i ) } ) ) |
| 61 |
60
|
sseq1d |
|- ( y = ( F ` i ) -> ( ( `' F " { y } ) C_ v <-> ( `' F " { ( F ` i ) } ) C_ v ) ) |
| 62 |
61
|
elrab |
|- ( ( F ` i ) e. { y e. Y | ( `' F " { y } ) C_ v } <-> ( ( F ` i ) e. Y /\ ( `' F " { ( F ` i ) } ) C_ v ) ) |
| 63 |
62
|
simprbi |
|- ( ( F ` i ) e. { y e. Y | ( `' F " { y } ) C_ v } -> ( `' F " { ( F ` i ) } ) C_ v ) |
| 64 |
58 63
|
syl |
|- ( ( ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) /\ u C_ { y e. Y | ( `' F " { y } ) C_ v } ) /\ i e. ( `' F " u ) ) -> ( `' F " { ( F ` i ) } ) C_ v ) |
| 65 |
56
|
simpld |
|- ( ( ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) /\ u C_ { y e. Y | ( `' F " { y } ) C_ v } ) /\ i e. ( `' F " u ) ) -> i e. X ) |
| 66 |
|
eqidd |
|- ( ( ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) /\ u C_ { y e. Y | ( `' F " { y } ) C_ v } ) /\ i e. ( `' F " u ) ) -> ( F ` i ) = ( F ` i ) ) |
| 67 |
|
fniniseg |
|- ( F Fn X -> ( i e. ( `' F " { ( F ` i ) } ) <-> ( i e. X /\ ( F ` i ) = ( F ` i ) ) ) ) |
| 68 |
67
|
biimpar |
|- ( ( F Fn X /\ ( i e. X /\ ( F ` i ) = ( F ` i ) ) ) -> i e. ( `' F " { ( F ` i ) } ) ) |
| 69 |
52 65 66 68
|
syl12anc |
|- ( ( ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) /\ u C_ { y e. Y | ( `' F " { y } ) C_ v } ) /\ i e. ( `' F " u ) ) -> i e. ( `' F " { ( F ` i ) } ) ) |
| 70 |
64 69
|
sseldd |
|- ( ( ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) /\ u C_ { y e. Y | ( `' F " { y } ) C_ v } ) /\ i e. ( `' F " u ) ) -> i e. v ) |
| 71 |
70
|
ex |
|- ( ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) /\ u C_ { y e. Y | ( `' F " { y } ) C_ v } ) -> ( i e. ( `' F " u ) -> i e. v ) ) |
| 72 |
71
|
ssrdv |
|- ( ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) /\ u C_ { y e. Y | ( `' F " { y } ) C_ v } ) -> ( `' F " u ) C_ v ) |
| 73 |
49 72
|
impbida |
|- ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) -> ( ( `' F " u ) C_ v <-> u C_ { y e. Y | ( `' F " { y } ) C_ v } ) ) |
| 74 |
|
simpr |
|- ( ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) /\ n = u ) -> n = u ) |
| 75 |
74
|
imaeq2d |
|- ( ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) /\ n = u ) -> ( `' F " n ) = ( `' F " u ) ) |
| 76 |
7 5
|
fexd |
|- ( ph -> F e. _V ) |
| 77 |
|
cnvexg |
|- ( F e. _V -> `' F e. _V ) |
| 78 |
|
imaexg |
|- ( `' F e. _V -> ( `' F " u ) e. _V ) |
| 79 |
76 77 78
|
3syl |
|- ( ph -> ( `' F " u ) e. _V ) |
| 80 |
79
|
ad2antrr |
|- ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) -> ( `' F " u ) e. _V ) |
| 81 |
1 75 35 80
|
fvmptd2 |
|- ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) -> ( G ` u ) = ( `' F " u ) ) |
| 82 |
81
|
sseq1d |
|- ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) -> ( ( G ` u ) C_ v <-> ( `' F " u ) C_ v ) ) |
| 83 |
|
simpr |
|- ( ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) /\ m = v ) -> m = v ) |
| 84 |
83
|
sseq2d |
|- ( ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) /\ m = v ) -> ( ( `' F " { y } ) C_ m <-> ( `' F " { y } ) C_ v ) ) |
| 85 |
84
|
rabbidv |
|- ( ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) /\ m = v ) -> { y e. Y | ( `' F " { y } ) C_ m } = { y e. Y | ( `' F " { y } ) C_ v } ) |
| 86 |
|
simpr |
|- ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) -> v e. ( Base ` W ) ) |
| 87 |
5 17
|
syl |
|- ( ph -> ~P X e. _V ) |
| 88 |
87
|
ad2antrr |
|- ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) -> ~P X e. _V ) |
| 89 |
88 18
|
syl |
|- ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) -> ~P X = ( Base ` W ) ) |
| 90 |
86 89
|
eleqtrrd |
|- ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) -> v e. ~P X ) |
| 91 |
6
|
ad2antrr |
|- ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) -> Y e. B ) |
| 92 |
|
ssrab2 |
|- { y e. Y | ( `' F " { y } ) C_ v } C_ Y |
| 93 |
92
|
a1i |
|- ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) -> { y e. Y | ( `' F " { y } ) C_ v } C_ Y ) |
| 94 |
91 93
|
sselpwd |
|- ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) -> { y e. Y | ( `' F " { y } ) C_ v } e. ~P Y ) |
| 95 |
2 85 90 94
|
fvmptd2 |
|- ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) -> ( H ` v ) = { y e. Y | ( `' F " { y } ) C_ v } ) |
| 96 |
95
|
sseq2d |
|- ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) -> ( u C_ ( H ` v ) <-> u C_ { y e. Y | ( `' F " { y } ) C_ v } ) ) |
| 97 |
73 82 96
|
3bitr4d |
|- ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) -> ( ( G ` u ) C_ v <-> u C_ ( H ` v ) ) ) |
| 98 |
13
|
ad2antrr |
|- ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) -> G : ~P Y --> ~P X ) |
| 99 |
98 35
|
ffvelcdmd |
|- ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) -> ( G ` u ) e. ~P X ) |
| 100 |
|
eqid |
|- ( le ` W ) = ( le ` W ) |
| 101 |
4 100
|
ipole |
|- ( ( ~P X e. _V /\ ( G ` u ) e. ~P X /\ v e. ~P X ) -> ( ( G ` u ) ( le ` W ) v <-> ( G ` u ) C_ v ) ) |
| 102 |
88 99 90 101
|
syl3anc |
|- ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) -> ( ( G ` u ) ( le ` W ) v <-> ( G ` u ) C_ v ) ) |
| 103 |
6 14
|
syl |
|- ( ph -> ~P Y e. _V ) |
| 104 |
103
|
ad2antrr |
|- ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) -> ~P Y e. _V ) |
| 105 |
26
|
ad2antrr |
|- ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) -> H : ~P X --> ~P Y ) |
| 106 |
105 90
|
ffvelcdmd |
|- ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) -> ( H ` v ) e. ~P Y ) |
| 107 |
|
eqid |
|- ( le ` V ) = ( le ` V ) |
| 108 |
3 107
|
ipole |
|- ( ( ~P Y e. _V /\ u e. ~P Y /\ ( H ` v ) e. ~P Y ) -> ( u ( le ` V ) ( H ` v ) <-> u C_ ( H ` v ) ) ) |
| 109 |
104 35 106 108
|
syl3anc |
|- ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) -> ( u ( le ` V ) ( H ` v ) <-> u C_ ( H ` v ) ) ) |
| 110 |
97 102 109
|
3bitr4d |
|- ( ( ( ph /\ u e. ( Base ` V ) ) /\ v e. ( Base ` W ) ) -> ( ( G ` u ) ( le ` W ) v <-> u ( le ` V ) ( H ` v ) ) ) |
| 111 |
110
|
anasss |
|- ( ( ph /\ ( u e. ( Base ` V ) /\ v e. ( Base ` W ) ) ) -> ( ( G ` u ) ( le ` W ) v <-> u ( le ` V ) ( H ` v ) ) ) |
| 112 |
111
|
ralrimivva |
|- ( ph -> A. u e. ( Base ` V ) A. v e. ( Base ` W ) ( ( G ` u ) ( le ` W ) v <-> u ( le ` V ) ( H ` v ) ) ) |
| 113 |
|
eqid |
|- ( Base ` V ) = ( Base ` V ) |
| 114 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 115 |
|
eqid |
|- ( V MGalConn W ) = ( V MGalConn W ) |
| 116 |
3
|
ipopos |
|- V e. Poset |
| 117 |
|
posprs |
|- ( V e. Poset -> V e. Proset ) |
| 118 |
116 117
|
mp1i |
|- ( ph -> V e. Proset ) |
| 119 |
4
|
ipopos |
|- W e. Poset |
| 120 |
|
posprs |
|- ( W e. Poset -> W e. Proset ) |
| 121 |
119 120
|
mp1i |
|- ( ph -> W e. Proset ) |
| 122 |
113 114 107 100 115 118 121
|
mgcval |
|- ( ph -> ( G ( V MGalConn W ) H <-> ( ( G : ( Base ` V ) --> ( Base ` W ) /\ H : ( Base ` W ) --> ( Base ` V ) ) /\ A. u e. ( Base ` V ) A. v e. ( Base ` W ) ( ( G ` u ) ( le ` W ) v <-> u ( le ` V ) ( H ` v ) ) ) ) ) |
| 123 |
29 112 122
|
mpbir2and |
|- ( ph -> G ( V MGalConn W ) H ) |