Metamath Proof Explorer


Theorem nmopleid

Description: A nonzero, bounded Hermitian operator divided by its norm is less than or equal to the identity operator. (Contributed by NM, 12-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion nmopleid ( ( 𝑇 ∈ HrmOp ∧ ( normop𝑇 ) ∈ ℝ ∧ 𝑇 ≠ 0hop ) → ( ( 1 / ( normop𝑇 ) ) ·op 𝑇 ) ≤op Iop )

Proof

Step Hyp Ref Expression
1 hmoplin ( 𝑇 ∈ HrmOp → 𝑇 ∈ LinOp )
2 nmlnopne0 ( 𝑇 ∈ LinOp → ( ( normop𝑇 ) ≠ 0 ↔ 𝑇 ≠ 0hop ) )
3 2 biimpar ( ( 𝑇 ∈ LinOp ∧ 𝑇 ≠ 0hop ) → ( normop𝑇 ) ≠ 0 )
4 1 3 sylan ( ( 𝑇 ∈ HrmOp ∧ 𝑇 ≠ 0hop ) → ( normop𝑇 ) ≠ 0 )
5 4 adantlr ( ( ( 𝑇 ∈ HrmOp ∧ ( normop𝑇 ) ∈ ℝ ) ∧ 𝑇 ≠ 0hop ) → ( normop𝑇 ) ≠ 0 )
6 rereccl ( ( ( normop𝑇 ) ∈ ℝ ∧ ( normop𝑇 ) ≠ 0 ) → ( 1 / ( normop𝑇 ) ) ∈ ℝ )
7 6 adantll ( ( ( 𝑇 ∈ HrmOp ∧ ( normop𝑇 ) ∈ ℝ ) ∧ ( normop𝑇 ) ≠ 0 ) → ( 1 / ( normop𝑇 ) ) ∈ ℝ )
8 simpll ( ( ( 𝑇 ∈ HrmOp ∧ ( normop𝑇 ) ∈ ℝ ) ∧ ( normop𝑇 ) ≠ 0 ) → 𝑇 ∈ HrmOp )
9 idhmop Iop ∈ HrmOp
10 hmopm ( ( ( normop𝑇 ) ∈ ℝ ∧ Iop ∈ HrmOp ) → ( ( normop𝑇 ) ·op Iop ) ∈ HrmOp )
11 9 10 mpan2 ( ( normop𝑇 ) ∈ ℝ → ( ( normop𝑇 ) ·op Iop ) ∈ HrmOp )
12 11 ad2antlr ( ( ( 𝑇 ∈ HrmOp ∧ ( normop𝑇 ) ∈ ℝ ) ∧ ( normop𝑇 ) ≠ 0 ) → ( ( normop𝑇 ) ·op Iop ) ∈ HrmOp )
13 simplr ( ( ( 𝑇 ∈ HrmOp ∧ ( normop𝑇 ) ∈ ℝ ) ∧ ( normop𝑇 ) ≠ 0 ) → ( normop𝑇 ) ∈ ℝ )
14 hmopf ( 𝑇 ∈ HrmOp → 𝑇 : ℋ ⟶ ℋ )
15 nmopgt0 ( 𝑇 : ℋ ⟶ ℋ → ( ( normop𝑇 ) ≠ 0 ↔ 0 < ( normop𝑇 ) ) )
16 15 biimpa ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( normop𝑇 ) ≠ 0 ) → 0 < ( normop𝑇 ) )
17 14 16 sylan ( ( 𝑇 ∈ HrmOp ∧ ( normop𝑇 ) ≠ 0 ) → 0 < ( normop𝑇 ) )
18 17 adantlr ( ( ( 𝑇 ∈ HrmOp ∧ ( normop𝑇 ) ∈ ℝ ) ∧ ( normop𝑇 ) ≠ 0 ) → 0 < ( normop𝑇 ) )
19 13 18 recgt0d ( ( ( 𝑇 ∈ HrmOp ∧ ( normop𝑇 ) ∈ ℝ ) ∧ ( normop𝑇 ) ≠ 0 ) → 0 < ( 1 / ( normop𝑇 ) ) )
20 0re 0 ∈ ℝ
21 ltle ( ( 0 ∈ ℝ ∧ ( 1 / ( normop𝑇 ) ) ∈ ℝ ) → ( 0 < ( 1 / ( normop𝑇 ) ) → 0 ≤ ( 1 / ( normop𝑇 ) ) ) )
22 20 6 21 sylancr ( ( ( normop𝑇 ) ∈ ℝ ∧ ( normop𝑇 ) ≠ 0 ) → ( 0 < ( 1 / ( normop𝑇 ) ) → 0 ≤ ( 1 / ( normop𝑇 ) ) ) )
23 22 adantll ( ( ( 𝑇 ∈ HrmOp ∧ ( normop𝑇 ) ∈ ℝ ) ∧ ( normop𝑇 ) ≠ 0 ) → ( 0 < ( 1 / ( normop𝑇 ) ) → 0 ≤ ( 1 / ( normop𝑇 ) ) ) )
24 19 23 mpd ( ( ( 𝑇 ∈ HrmOp ∧ ( normop𝑇 ) ∈ ℝ ) ∧ ( normop𝑇 ) ≠ 0 ) → 0 ≤ ( 1 / ( normop𝑇 ) ) )
25 leopnmid ( ( 𝑇 ∈ HrmOp ∧ ( normop𝑇 ) ∈ ℝ ) → 𝑇op ( ( normop𝑇 ) ·op Iop ) )
26 25 adantr ( ( ( 𝑇 ∈ HrmOp ∧ ( normop𝑇 ) ∈ ℝ ) ∧ ( normop𝑇 ) ≠ 0 ) → 𝑇op ( ( normop𝑇 ) ·op Iop ) )
27 leopmul2i ( ( ( ( 1 / ( normop𝑇 ) ) ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ ( ( normop𝑇 ) ·op Iop ) ∈ HrmOp ) ∧ ( 0 ≤ ( 1 / ( normop𝑇 ) ) ∧ 𝑇op ( ( normop𝑇 ) ·op Iop ) ) ) → ( ( 1 / ( normop𝑇 ) ) ·op 𝑇 ) ≤op ( ( 1 / ( normop𝑇 ) ) ·op ( ( normop𝑇 ) ·op Iop ) ) )
28 7 8 12 24 26 27 syl32anc ( ( ( 𝑇 ∈ HrmOp ∧ ( normop𝑇 ) ∈ ℝ ) ∧ ( normop𝑇 ) ≠ 0 ) → ( ( 1 / ( normop𝑇 ) ) ·op 𝑇 ) ≤op ( ( 1 / ( normop𝑇 ) ) ·op ( ( normop𝑇 ) ·op Iop ) ) )
29 recn ( ( normop𝑇 ) ∈ ℝ → ( normop𝑇 ) ∈ ℂ )
30 reccl ( ( ( normop𝑇 ) ∈ ℂ ∧ ( normop𝑇 ) ≠ 0 ) → ( 1 / ( normop𝑇 ) ) ∈ ℂ )
31 simpl ( ( ( normop𝑇 ) ∈ ℂ ∧ ( normop𝑇 ) ≠ 0 ) → ( normop𝑇 ) ∈ ℂ )
32 hoif Iop : ℋ –1-1-onto→ ℋ
33 f1of ( Iop : ℋ –1-1-onto→ ℋ → Iop : ℋ ⟶ ℋ )
34 32 33 ax-mp Iop : ℋ ⟶ ℋ
35 homulass ( ( ( 1 / ( normop𝑇 ) ) ∈ ℂ ∧ ( normop𝑇 ) ∈ ℂ ∧ Iop : ℋ ⟶ ℋ ) → ( ( ( 1 / ( normop𝑇 ) ) · ( normop𝑇 ) ) ·op Iop ) = ( ( 1 / ( normop𝑇 ) ) ·op ( ( normop𝑇 ) ·op Iop ) ) )
36 34 35 mp3an3 ( ( ( 1 / ( normop𝑇 ) ) ∈ ℂ ∧ ( normop𝑇 ) ∈ ℂ ) → ( ( ( 1 / ( normop𝑇 ) ) · ( normop𝑇 ) ) ·op Iop ) = ( ( 1 / ( normop𝑇 ) ) ·op ( ( normop𝑇 ) ·op Iop ) ) )
37 30 31 36 syl2anc ( ( ( normop𝑇 ) ∈ ℂ ∧ ( normop𝑇 ) ≠ 0 ) → ( ( ( 1 / ( normop𝑇 ) ) · ( normop𝑇 ) ) ·op Iop ) = ( ( 1 / ( normop𝑇 ) ) ·op ( ( normop𝑇 ) ·op Iop ) ) )
38 recid2 ( ( ( normop𝑇 ) ∈ ℂ ∧ ( normop𝑇 ) ≠ 0 ) → ( ( 1 / ( normop𝑇 ) ) · ( normop𝑇 ) ) = 1 )
39 38 oveq1d ( ( ( normop𝑇 ) ∈ ℂ ∧ ( normop𝑇 ) ≠ 0 ) → ( ( ( 1 / ( normop𝑇 ) ) · ( normop𝑇 ) ) ·op Iop ) = ( 1 ·op Iop ) )
40 37 39 eqtr3d ( ( ( normop𝑇 ) ∈ ℂ ∧ ( normop𝑇 ) ≠ 0 ) → ( ( 1 / ( normop𝑇 ) ) ·op ( ( normop𝑇 ) ·op Iop ) ) = ( 1 ·op Iop ) )
41 homulid2 ( Iop : ℋ ⟶ ℋ → ( 1 ·op Iop ) = Iop )
42 34 41 ax-mp ( 1 ·op Iop ) = Iop
43 40 42 eqtrdi ( ( ( normop𝑇 ) ∈ ℂ ∧ ( normop𝑇 ) ≠ 0 ) → ( ( 1 / ( normop𝑇 ) ) ·op ( ( normop𝑇 ) ·op Iop ) ) = Iop )
44 29 43 sylan ( ( ( normop𝑇 ) ∈ ℝ ∧ ( normop𝑇 ) ≠ 0 ) → ( ( 1 / ( normop𝑇 ) ) ·op ( ( normop𝑇 ) ·op Iop ) ) = Iop )
45 44 adantll ( ( ( 𝑇 ∈ HrmOp ∧ ( normop𝑇 ) ∈ ℝ ) ∧ ( normop𝑇 ) ≠ 0 ) → ( ( 1 / ( normop𝑇 ) ) ·op ( ( normop𝑇 ) ·op Iop ) ) = Iop )
46 28 45 breqtrd ( ( ( 𝑇 ∈ HrmOp ∧ ( normop𝑇 ) ∈ ℝ ) ∧ ( normop𝑇 ) ≠ 0 ) → ( ( 1 / ( normop𝑇 ) ) ·op 𝑇 ) ≤op Iop )
47 5 46 syldan ( ( ( 𝑇 ∈ HrmOp ∧ ( normop𝑇 ) ∈ ℝ ) ∧ 𝑇 ≠ 0hop ) → ( ( 1 / ( normop𝑇 ) ) ·op 𝑇 ) ≤op Iop )
48 47 3impa ( ( 𝑇 ∈ HrmOp ∧ ( normop𝑇 ) ∈ ℝ ∧ 𝑇 ≠ 0hop ) → ( ( 1 / ( normop𝑇 ) ) ·op 𝑇 ) ≤op Iop )