Step |
Hyp |
Ref |
Expression |
1 |
|
hmoplin |
⊢ ( 𝑇 ∈ HrmOp → 𝑇 ∈ LinOp ) |
2 |
|
nmlnopne0 |
⊢ ( 𝑇 ∈ LinOp → ( ( normop ‘ 𝑇 ) ≠ 0 ↔ 𝑇 ≠ 0hop ) ) |
3 |
2
|
biimpar |
⊢ ( ( 𝑇 ∈ LinOp ∧ 𝑇 ≠ 0hop ) → ( normop ‘ 𝑇 ) ≠ 0 ) |
4 |
1 3
|
sylan |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑇 ≠ 0hop ) → ( normop ‘ 𝑇 ) ≠ 0 ) |
5 |
4
|
adantlr |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ ( normop ‘ 𝑇 ) ∈ ℝ ) ∧ 𝑇 ≠ 0hop ) → ( normop ‘ 𝑇 ) ≠ 0 ) |
6 |
|
rereccl |
⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℝ ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → ( 1 / ( normop ‘ 𝑇 ) ) ∈ ℝ ) |
7 |
6
|
adantll |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ ( normop ‘ 𝑇 ) ∈ ℝ ) ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → ( 1 / ( normop ‘ 𝑇 ) ) ∈ ℝ ) |
8 |
|
simpll |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ ( normop ‘ 𝑇 ) ∈ ℝ ) ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → 𝑇 ∈ HrmOp ) |
9 |
|
idhmop |
⊢ Iop ∈ HrmOp |
10 |
|
hmopm |
⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℝ ∧ Iop ∈ HrmOp ) → ( ( normop ‘ 𝑇 ) ·op Iop ) ∈ HrmOp ) |
11 |
9 10
|
mpan2 |
⊢ ( ( normop ‘ 𝑇 ) ∈ ℝ → ( ( normop ‘ 𝑇 ) ·op Iop ) ∈ HrmOp ) |
12 |
11
|
ad2antlr |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ ( normop ‘ 𝑇 ) ∈ ℝ ) ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → ( ( normop ‘ 𝑇 ) ·op Iop ) ∈ HrmOp ) |
13 |
|
simplr |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ ( normop ‘ 𝑇 ) ∈ ℝ ) ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → ( normop ‘ 𝑇 ) ∈ ℝ ) |
14 |
|
hmopf |
⊢ ( 𝑇 ∈ HrmOp → 𝑇 : ℋ ⟶ ℋ ) |
15 |
|
nmopgt0 |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( ( normop ‘ 𝑇 ) ≠ 0 ↔ 0 < ( normop ‘ 𝑇 ) ) ) |
16 |
15
|
biimpa |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → 0 < ( normop ‘ 𝑇 ) ) |
17 |
14 16
|
sylan |
⊢ ( ( 𝑇 ∈ HrmOp ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → 0 < ( normop ‘ 𝑇 ) ) |
18 |
17
|
adantlr |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ ( normop ‘ 𝑇 ) ∈ ℝ ) ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → 0 < ( normop ‘ 𝑇 ) ) |
19 |
13 18
|
recgt0d |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ ( normop ‘ 𝑇 ) ∈ ℝ ) ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → 0 < ( 1 / ( normop ‘ 𝑇 ) ) ) |
20 |
|
0re |
⊢ 0 ∈ ℝ |
21 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ ( 1 / ( normop ‘ 𝑇 ) ) ∈ ℝ ) → ( 0 < ( 1 / ( normop ‘ 𝑇 ) ) → 0 ≤ ( 1 / ( normop ‘ 𝑇 ) ) ) ) |
22 |
20 6 21
|
sylancr |
⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℝ ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → ( 0 < ( 1 / ( normop ‘ 𝑇 ) ) → 0 ≤ ( 1 / ( normop ‘ 𝑇 ) ) ) ) |
23 |
22
|
adantll |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ ( normop ‘ 𝑇 ) ∈ ℝ ) ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → ( 0 < ( 1 / ( normop ‘ 𝑇 ) ) → 0 ≤ ( 1 / ( normop ‘ 𝑇 ) ) ) ) |
24 |
19 23
|
mpd |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ ( normop ‘ 𝑇 ) ∈ ℝ ) ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → 0 ≤ ( 1 / ( normop ‘ 𝑇 ) ) ) |
25 |
|
leopnmid |
⊢ ( ( 𝑇 ∈ HrmOp ∧ ( normop ‘ 𝑇 ) ∈ ℝ ) → 𝑇 ≤op ( ( normop ‘ 𝑇 ) ·op Iop ) ) |
26 |
25
|
adantr |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ ( normop ‘ 𝑇 ) ∈ ℝ ) ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → 𝑇 ≤op ( ( normop ‘ 𝑇 ) ·op Iop ) ) |
27 |
|
leopmul2i |
⊢ ( ( ( ( 1 / ( normop ‘ 𝑇 ) ) ∈ ℝ ∧ 𝑇 ∈ HrmOp ∧ ( ( normop ‘ 𝑇 ) ·op Iop ) ∈ HrmOp ) ∧ ( 0 ≤ ( 1 / ( normop ‘ 𝑇 ) ) ∧ 𝑇 ≤op ( ( normop ‘ 𝑇 ) ·op Iop ) ) ) → ( ( 1 / ( normop ‘ 𝑇 ) ) ·op 𝑇 ) ≤op ( ( 1 / ( normop ‘ 𝑇 ) ) ·op ( ( normop ‘ 𝑇 ) ·op Iop ) ) ) |
28 |
7 8 12 24 26 27
|
syl32anc |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ ( normop ‘ 𝑇 ) ∈ ℝ ) ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → ( ( 1 / ( normop ‘ 𝑇 ) ) ·op 𝑇 ) ≤op ( ( 1 / ( normop ‘ 𝑇 ) ) ·op ( ( normop ‘ 𝑇 ) ·op Iop ) ) ) |
29 |
|
recn |
⊢ ( ( normop ‘ 𝑇 ) ∈ ℝ → ( normop ‘ 𝑇 ) ∈ ℂ ) |
30 |
|
reccl |
⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℂ ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → ( 1 / ( normop ‘ 𝑇 ) ) ∈ ℂ ) |
31 |
|
simpl |
⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℂ ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → ( normop ‘ 𝑇 ) ∈ ℂ ) |
32 |
|
hoif |
⊢ Iop : ℋ –1-1-onto→ ℋ |
33 |
|
f1of |
⊢ ( Iop : ℋ –1-1-onto→ ℋ → Iop : ℋ ⟶ ℋ ) |
34 |
32 33
|
ax-mp |
⊢ Iop : ℋ ⟶ ℋ |
35 |
|
homulass |
⊢ ( ( ( 1 / ( normop ‘ 𝑇 ) ) ∈ ℂ ∧ ( normop ‘ 𝑇 ) ∈ ℂ ∧ Iop : ℋ ⟶ ℋ ) → ( ( ( 1 / ( normop ‘ 𝑇 ) ) · ( normop ‘ 𝑇 ) ) ·op Iop ) = ( ( 1 / ( normop ‘ 𝑇 ) ) ·op ( ( normop ‘ 𝑇 ) ·op Iop ) ) ) |
36 |
34 35
|
mp3an3 |
⊢ ( ( ( 1 / ( normop ‘ 𝑇 ) ) ∈ ℂ ∧ ( normop ‘ 𝑇 ) ∈ ℂ ) → ( ( ( 1 / ( normop ‘ 𝑇 ) ) · ( normop ‘ 𝑇 ) ) ·op Iop ) = ( ( 1 / ( normop ‘ 𝑇 ) ) ·op ( ( normop ‘ 𝑇 ) ·op Iop ) ) ) |
37 |
30 31 36
|
syl2anc |
⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℂ ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → ( ( ( 1 / ( normop ‘ 𝑇 ) ) · ( normop ‘ 𝑇 ) ) ·op Iop ) = ( ( 1 / ( normop ‘ 𝑇 ) ) ·op ( ( normop ‘ 𝑇 ) ·op Iop ) ) ) |
38 |
|
recid2 |
⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℂ ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → ( ( 1 / ( normop ‘ 𝑇 ) ) · ( normop ‘ 𝑇 ) ) = 1 ) |
39 |
38
|
oveq1d |
⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℂ ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → ( ( ( 1 / ( normop ‘ 𝑇 ) ) · ( normop ‘ 𝑇 ) ) ·op Iop ) = ( 1 ·op Iop ) ) |
40 |
37 39
|
eqtr3d |
⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℂ ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → ( ( 1 / ( normop ‘ 𝑇 ) ) ·op ( ( normop ‘ 𝑇 ) ·op Iop ) ) = ( 1 ·op Iop ) ) |
41 |
|
homulid2 |
⊢ ( Iop : ℋ ⟶ ℋ → ( 1 ·op Iop ) = Iop ) |
42 |
34 41
|
ax-mp |
⊢ ( 1 ·op Iop ) = Iop |
43 |
40 42
|
eqtrdi |
⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℂ ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → ( ( 1 / ( normop ‘ 𝑇 ) ) ·op ( ( normop ‘ 𝑇 ) ·op Iop ) ) = Iop ) |
44 |
29 43
|
sylan |
⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℝ ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → ( ( 1 / ( normop ‘ 𝑇 ) ) ·op ( ( normop ‘ 𝑇 ) ·op Iop ) ) = Iop ) |
45 |
44
|
adantll |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ ( normop ‘ 𝑇 ) ∈ ℝ ) ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → ( ( 1 / ( normop ‘ 𝑇 ) ) ·op ( ( normop ‘ 𝑇 ) ·op Iop ) ) = Iop ) |
46 |
28 45
|
breqtrd |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ ( normop ‘ 𝑇 ) ∈ ℝ ) ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → ( ( 1 / ( normop ‘ 𝑇 ) ) ·op 𝑇 ) ≤op Iop ) |
47 |
5 46
|
syldan |
⊢ ( ( ( 𝑇 ∈ HrmOp ∧ ( normop ‘ 𝑇 ) ∈ ℝ ) ∧ 𝑇 ≠ 0hop ) → ( ( 1 / ( normop ‘ 𝑇 ) ) ·op 𝑇 ) ≤op Iop ) |
48 |
47
|
3impa |
⊢ ( ( 𝑇 ∈ HrmOp ∧ ( normop ‘ 𝑇 ) ∈ ℝ ∧ 𝑇 ≠ 0hop ) → ( ( 1 / ( normop ‘ 𝑇 ) ) ·op 𝑇 ) ≤op Iop ) |