Step |
Hyp |
Ref |
Expression |
1 |
|
hmoplin |
|- ( T e. HrmOp -> T e. LinOp ) |
2 |
|
nmlnopne0 |
|- ( T e. LinOp -> ( ( normop ` T ) =/= 0 <-> T =/= 0hop ) ) |
3 |
2
|
biimpar |
|- ( ( T e. LinOp /\ T =/= 0hop ) -> ( normop ` T ) =/= 0 ) |
4 |
1 3
|
sylan |
|- ( ( T e. HrmOp /\ T =/= 0hop ) -> ( normop ` T ) =/= 0 ) |
5 |
4
|
adantlr |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ T =/= 0hop ) -> ( normop ` T ) =/= 0 ) |
6 |
|
rereccl |
|- ( ( ( normop ` T ) e. RR /\ ( normop ` T ) =/= 0 ) -> ( 1 / ( normop ` T ) ) e. RR ) |
7 |
6
|
adantll |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ ( normop ` T ) =/= 0 ) -> ( 1 / ( normop ` T ) ) e. RR ) |
8 |
|
simpll |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ ( normop ` T ) =/= 0 ) -> T e. HrmOp ) |
9 |
|
idhmop |
|- Iop e. HrmOp |
10 |
|
hmopm |
|- ( ( ( normop ` T ) e. RR /\ Iop e. HrmOp ) -> ( ( normop ` T ) .op Iop ) e. HrmOp ) |
11 |
9 10
|
mpan2 |
|- ( ( normop ` T ) e. RR -> ( ( normop ` T ) .op Iop ) e. HrmOp ) |
12 |
11
|
ad2antlr |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ ( normop ` T ) =/= 0 ) -> ( ( normop ` T ) .op Iop ) e. HrmOp ) |
13 |
|
simplr |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ ( normop ` T ) =/= 0 ) -> ( normop ` T ) e. RR ) |
14 |
|
hmopf |
|- ( T e. HrmOp -> T : ~H --> ~H ) |
15 |
|
nmopgt0 |
|- ( T : ~H --> ~H -> ( ( normop ` T ) =/= 0 <-> 0 < ( normop ` T ) ) ) |
16 |
15
|
biimpa |
|- ( ( T : ~H --> ~H /\ ( normop ` T ) =/= 0 ) -> 0 < ( normop ` T ) ) |
17 |
14 16
|
sylan |
|- ( ( T e. HrmOp /\ ( normop ` T ) =/= 0 ) -> 0 < ( normop ` T ) ) |
18 |
17
|
adantlr |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ ( normop ` T ) =/= 0 ) -> 0 < ( normop ` T ) ) |
19 |
13 18
|
recgt0d |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ ( normop ` T ) =/= 0 ) -> 0 < ( 1 / ( normop ` T ) ) ) |
20 |
|
0re |
|- 0 e. RR |
21 |
|
ltle |
|- ( ( 0 e. RR /\ ( 1 / ( normop ` T ) ) e. RR ) -> ( 0 < ( 1 / ( normop ` T ) ) -> 0 <_ ( 1 / ( normop ` T ) ) ) ) |
22 |
20 6 21
|
sylancr |
|- ( ( ( normop ` T ) e. RR /\ ( normop ` T ) =/= 0 ) -> ( 0 < ( 1 / ( normop ` T ) ) -> 0 <_ ( 1 / ( normop ` T ) ) ) ) |
23 |
22
|
adantll |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ ( normop ` T ) =/= 0 ) -> ( 0 < ( 1 / ( normop ` T ) ) -> 0 <_ ( 1 / ( normop ` T ) ) ) ) |
24 |
19 23
|
mpd |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ ( normop ` T ) =/= 0 ) -> 0 <_ ( 1 / ( normop ` T ) ) ) |
25 |
|
leopnmid |
|- ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) -> T <_op ( ( normop ` T ) .op Iop ) ) |
26 |
25
|
adantr |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ ( normop ` T ) =/= 0 ) -> T <_op ( ( normop ` T ) .op Iop ) ) |
27 |
|
leopmul2i |
|- ( ( ( ( 1 / ( normop ` T ) ) e. RR /\ T e. HrmOp /\ ( ( normop ` T ) .op Iop ) e. HrmOp ) /\ ( 0 <_ ( 1 / ( normop ` T ) ) /\ T <_op ( ( normop ` T ) .op Iop ) ) ) -> ( ( 1 / ( normop ` T ) ) .op T ) <_op ( ( 1 / ( normop ` T ) ) .op ( ( normop ` T ) .op Iop ) ) ) |
28 |
7 8 12 24 26 27
|
syl32anc |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ ( normop ` T ) =/= 0 ) -> ( ( 1 / ( normop ` T ) ) .op T ) <_op ( ( 1 / ( normop ` T ) ) .op ( ( normop ` T ) .op Iop ) ) ) |
29 |
|
recn |
|- ( ( normop ` T ) e. RR -> ( normop ` T ) e. CC ) |
30 |
|
reccl |
|- ( ( ( normop ` T ) e. CC /\ ( normop ` T ) =/= 0 ) -> ( 1 / ( normop ` T ) ) e. CC ) |
31 |
|
simpl |
|- ( ( ( normop ` T ) e. CC /\ ( normop ` T ) =/= 0 ) -> ( normop ` T ) e. CC ) |
32 |
|
hoif |
|- Iop : ~H -1-1-onto-> ~H |
33 |
|
f1of |
|- ( Iop : ~H -1-1-onto-> ~H -> Iop : ~H --> ~H ) |
34 |
32 33
|
ax-mp |
|- Iop : ~H --> ~H |
35 |
|
homulass |
|- ( ( ( 1 / ( normop ` T ) ) e. CC /\ ( normop ` T ) e. CC /\ Iop : ~H --> ~H ) -> ( ( ( 1 / ( normop ` T ) ) x. ( normop ` T ) ) .op Iop ) = ( ( 1 / ( normop ` T ) ) .op ( ( normop ` T ) .op Iop ) ) ) |
36 |
34 35
|
mp3an3 |
|- ( ( ( 1 / ( normop ` T ) ) e. CC /\ ( normop ` T ) e. CC ) -> ( ( ( 1 / ( normop ` T ) ) x. ( normop ` T ) ) .op Iop ) = ( ( 1 / ( normop ` T ) ) .op ( ( normop ` T ) .op Iop ) ) ) |
37 |
30 31 36
|
syl2anc |
|- ( ( ( normop ` T ) e. CC /\ ( normop ` T ) =/= 0 ) -> ( ( ( 1 / ( normop ` T ) ) x. ( normop ` T ) ) .op Iop ) = ( ( 1 / ( normop ` T ) ) .op ( ( normop ` T ) .op Iop ) ) ) |
38 |
|
recid2 |
|- ( ( ( normop ` T ) e. CC /\ ( normop ` T ) =/= 0 ) -> ( ( 1 / ( normop ` T ) ) x. ( normop ` T ) ) = 1 ) |
39 |
38
|
oveq1d |
|- ( ( ( normop ` T ) e. CC /\ ( normop ` T ) =/= 0 ) -> ( ( ( 1 / ( normop ` T ) ) x. ( normop ` T ) ) .op Iop ) = ( 1 .op Iop ) ) |
40 |
37 39
|
eqtr3d |
|- ( ( ( normop ` T ) e. CC /\ ( normop ` T ) =/= 0 ) -> ( ( 1 / ( normop ` T ) ) .op ( ( normop ` T ) .op Iop ) ) = ( 1 .op Iop ) ) |
41 |
|
homulid2 |
|- ( Iop : ~H --> ~H -> ( 1 .op Iop ) = Iop ) |
42 |
34 41
|
ax-mp |
|- ( 1 .op Iop ) = Iop |
43 |
40 42
|
eqtrdi |
|- ( ( ( normop ` T ) e. CC /\ ( normop ` T ) =/= 0 ) -> ( ( 1 / ( normop ` T ) ) .op ( ( normop ` T ) .op Iop ) ) = Iop ) |
44 |
29 43
|
sylan |
|- ( ( ( normop ` T ) e. RR /\ ( normop ` T ) =/= 0 ) -> ( ( 1 / ( normop ` T ) ) .op ( ( normop ` T ) .op Iop ) ) = Iop ) |
45 |
44
|
adantll |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ ( normop ` T ) =/= 0 ) -> ( ( 1 / ( normop ` T ) ) .op ( ( normop ` T ) .op Iop ) ) = Iop ) |
46 |
28 45
|
breqtrd |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ ( normop ` T ) =/= 0 ) -> ( ( 1 / ( normop ` T ) ) .op T ) <_op Iop ) |
47 |
5 46
|
syldan |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ T =/= 0hop ) -> ( ( 1 / ( normop ` T ) ) .op T ) <_op Iop ) |
48 |
47
|
3impa |
|- ( ( T e. HrmOp /\ ( normop ` T ) e. RR /\ T =/= 0hop ) -> ( ( 1 / ( normop ` T ) ) .op T ) <_op Iop ) |