Step |
Hyp |
Ref |
Expression |
1 |
|
opsqrlem1.1 |
|- T e. HrmOp |
2 |
|
opsqrlem1.2 |
|- ( normop ` T ) e. RR |
3 |
|
opsqrlem1.3 |
|- 0hop <_op T |
4 |
|
opsqrlem1.4 |
|- R = ( ( 1 / ( normop ` T ) ) .op T ) |
5 |
|
opsqrlem1.5 |
|- ( T =/= 0hop -> E. u e. HrmOp ( 0hop <_op u /\ ( u o. u ) = R ) ) |
6 |
|
hmopf |
|- ( T e. HrmOp -> T : ~H --> ~H ) |
7 |
1 6
|
ax-mp |
|- T : ~H --> ~H |
8 |
|
nmopge0 |
|- ( T : ~H --> ~H -> 0 <_ ( normop ` T ) ) |
9 |
7 8
|
ax-mp |
|- 0 <_ ( normop ` T ) |
10 |
2
|
sqrtcli |
|- ( 0 <_ ( normop ` T ) -> ( sqrt ` ( normop ` T ) ) e. RR ) |
11 |
9 10
|
ax-mp |
|- ( sqrt ` ( normop ` T ) ) e. RR |
12 |
|
hmopm |
|- ( ( ( sqrt ` ( normop ` T ) ) e. RR /\ u e. HrmOp ) -> ( ( sqrt ` ( normop ` T ) ) .op u ) e. HrmOp ) |
13 |
11 12
|
mpan |
|- ( u e. HrmOp -> ( ( sqrt ` ( normop ` T ) ) .op u ) e. HrmOp ) |
14 |
13
|
ad2antlr |
|- ( ( ( T =/= 0hop /\ u e. HrmOp ) /\ ( 0hop <_op u /\ ( u o. u ) = R ) ) -> ( ( sqrt ` ( normop ` T ) ) .op u ) e. HrmOp ) |
15 |
2
|
sqrtge0i |
|- ( 0 <_ ( normop ` T ) -> 0 <_ ( sqrt ` ( normop ` T ) ) ) |
16 |
9 15
|
ax-mp |
|- 0 <_ ( sqrt ` ( normop ` T ) ) |
17 |
|
leopmuli |
|- ( ( ( ( sqrt ` ( normop ` T ) ) e. RR /\ u e. HrmOp ) /\ ( 0 <_ ( sqrt ` ( normop ` T ) ) /\ 0hop <_op u ) ) -> 0hop <_op ( ( sqrt ` ( normop ` T ) ) .op u ) ) |
18 |
16 17
|
mpanr1 |
|- ( ( ( ( sqrt ` ( normop ` T ) ) e. RR /\ u e. HrmOp ) /\ 0hop <_op u ) -> 0hop <_op ( ( sqrt ` ( normop ` T ) ) .op u ) ) |
19 |
11 18
|
mpanl1 |
|- ( ( u e. HrmOp /\ 0hop <_op u ) -> 0hop <_op ( ( sqrt ` ( normop ` T ) ) .op u ) ) |
20 |
19
|
ad2ant2lr |
|- ( ( ( T =/= 0hop /\ u e. HrmOp ) /\ ( 0hop <_op u /\ ( u o. u ) = R ) ) -> 0hop <_op ( ( sqrt ` ( normop ` T ) ) .op u ) ) |
21 |
|
hmopf |
|- ( u e. HrmOp -> u : ~H --> ~H ) |
22 |
11
|
recni |
|- ( sqrt ` ( normop ` T ) ) e. CC |
23 |
|
homulcl |
|- ( ( ( sqrt ` ( normop ` T ) ) e. CC /\ u : ~H --> ~H ) -> ( ( sqrt ` ( normop ` T ) ) .op u ) : ~H --> ~H ) |
24 |
22 23
|
mpan |
|- ( u : ~H --> ~H -> ( ( sqrt ` ( normop ` T ) ) .op u ) : ~H --> ~H ) |
25 |
|
homco1 |
|- ( ( ( sqrt ` ( normop ` T ) ) e. CC /\ u : ~H --> ~H /\ ( ( sqrt ` ( normop ` T ) ) .op u ) : ~H --> ~H ) -> ( ( ( sqrt ` ( normop ` T ) ) .op u ) o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) = ( ( sqrt ` ( normop ` T ) ) .op ( u o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) ) ) |
26 |
22 25
|
mp3an1 |
|- ( ( u : ~H --> ~H /\ ( ( sqrt ` ( normop ` T ) ) .op u ) : ~H --> ~H ) -> ( ( ( sqrt ` ( normop ` T ) ) .op u ) o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) = ( ( sqrt ` ( normop ` T ) ) .op ( u o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) ) ) |
27 |
21 24 26
|
syl2anc2 |
|- ( u e. HrmOp -> ( ( ( sqrt ` ( normop ` T ) ) .op u ) o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) = ( ( sqrt ` ( normop ` T ) ) .op ( u o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) ) ) |
28 |
|
hmoplin |
|- ( u e. HrmOp -> u e. LinOp ) |
29 |
|
homco2 |
|- ( ( ( sqrt ` ( normop ` T ) ) e. CC /\ u e. LinOp /\ u : ~H --> ~H ) -> ( u o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) = ( ( sqrt ` ( normop ` T ) ) .op ( u o. u ) ) ) |
30 |
22 29
|
mp3an1 |
|- ( ( u e. LinOp /\ u : ~H --> ~H ) -> ( u o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) = ( ( sqrt ` ( normop ` T ) ) .op ( u o. u ) ) ) |
31 |
28 21 30
|
syl2anc |
|- ( u e. HrmOp -> ( u o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) = ( ( sqrt ` ( normop ` T ) ) .op ( u o. u ) ) ) |
32 |
31
|
oveq2d |
|- ( u e. HrmOp -> ( ( sqrt ` ( normop ` T ) ) .op ( u o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) ) = ( ( sqrt ` ( normop ` T ) ) .op ( ( sqrt ` ( normop ` T ) ) .op ( u o. u ) ) ) ) |
33 |
|
fco |
|- ( ( u : ~H --> ~H /\ u : ~H --> ~H ) -> ( u o. u ) : ~H --> ~H ) |
34 |
21 21 33
|
syl2anc |
|- ( u e. HrmOp -> ( u o. u ) : ~H --> ~H ) |
35 |
|
homulass |
|- ( ( ( sqrt ` ( normop ` T ) ) e. CC /\ ( sqrt ` ( normop ` T ) ) e. CC /\ ( u o. u ) : ~H --> ~H ) -> ( ( ( sqrt ` ( normop ` T ) ) x. ( sqrt ` ( normop ` T ) ) ) .op ( u o. u ) ) = ( ( sqrt ` ( normop ` T ) ) .op ( ( sqrt ` ( normop ` T ) ) .op ( u o. u ) ) ) ) |
36 |
22 22 35
|
mp3an12 |
|- ( ( u o. u ) : ~H --> ~H -> ( ( ( sqrt ` ( normop ` T ) ) x. ( sqrt ` ( normop ` T ) ) ) .op ( u o. u ) ) = ( ( sqrt ` ( normop ` T ) ) .op ( ( sqrt ` ( normop ` T ) ) .op ( u o. u ) ) ) ) |
37 |
34 36
|
syl |
|- ( u e. HrmOp -> ( ( ( sqrt ` ( normop ` T ) ) x. ( sqrt ` ( normop ` T ) ) ) .op ( u o. u ) ) = ( ( sqrt ` ( normop ` T ) ) .op ( ( sqrt ` ( normop ` T ) ) .op ( u o. u ) ) ) ) |
38 |
2
|
sqrtthi |
|- ( 0 <_ ( normop ` T ) -> ( ( sqrt ` ( normop ` T ) ) x. ( sqrt ` ( normop ` T ) ) ) = ( normop ` T ) ) |
39 |
9 38
|
ax-mp |
|- ( ( sqrt ` ( normop ` T ) ) x. ( sqrt ` ( normop ` T ) ) ) = ( normop ` T ) |
40 |
39
|
oveq1i |
|- ( ( ( sqrt ` ( normop ` T ) ) x. ( sqrt ` ( normop ` T ) ) ) .op ( u o. u ) ) = ( ( normop ` T ) .op ( u o. u ) ) |
41 |
37 40
|
eqtr3di |
|- ( u e. HrmOp -> ( ( sqrt ` ( normop ` T ) ) .op ( ( sqrt ` ( normop ` T ) ) .op ( u o. u ) ) ) = ( ( normop ` T ) .op ( u o. u ) ) ) |
42 |
27 32 41
|
3eqtrd |
|- ( u e. HrmOp -> ( ( ( sqrt ` ( normop ` T ) ) .op u ) o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) = ( ( normop ` T ) .op ( u o. u ) ) ) |
43 |
42
|
ad2antlr |
|- ( ( ( T =/= 0hop /\ u e. HrmOp ) /\ ( u o. u ) = R ) -> ( ( ( sqrt ` ( normop ` T ) ) .op u ) o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) = ( ( normop ` T ) .op ( u o. u ) ) ) |
44 |
|
id |
|- ( ( u o. u ) = R -> ( u o. u ) = R ) |
45 |
44 4
|
eqtrdi |
|- ( ( u o. u ) = R -> ( u o. u ) = ( ( 1 / ( normop ` T ) ) .op T ) ) |
46 |
45
|
oveq2d |
|- ( ( u o. u ) = R -> ( ( normop ` T ) .op ( u o. u ) ) = ( ( normop ` T ) .op ( ( 1 / ( normop ` T ) ) .op T ) ) ) |
47 |
|
hmoplin |
|- ( T e. HrmOp -> T e. LinOp ) |
48 |
1 47
|
ax-mp |
|- T e. LinOp |
49 |
|
nmlnopne0 |
|- ( T e. LinOp -> ( ( normop ` T ) =/= 0 <-> T =/= 0hop ) ) |
50 |
48 49
|
ax-mp |
|- ( ( normop ` T ) =/= 0 <-> T =/= 0hop ) |
51 |
2
|
recni |
|- ( normop ` T ) e. CC |
52 |
51
|
recidzi |
|- ( ( normop ` T ) =/= 0 -> ( ( normop ` T ) x. ( 1 / ( normop ` T ) ) ) = 1 ) |
53 |
50 52
|
sylbir |
|- ( T =/= 0hop -> ( ( normop ` T ) x. ( 1 / ( normop ` T ) ) ) = 1 ) |
54 |
53
|
oveq1d |
|- ( T =/= 0hop -> ( ( ( normop ` T ) x. ( 1 / ( normop ` T ) ) ) .op T ) = ( 1 .op T ) ) |
55 |
2
|
rerecclzi |
|- ( ( normop ` T ) =/= 0 -> ( 1 / ( normop ` T ) ) e. RR ) |
56 |
50 55
|
sylbir |
|- ( T =/= 0hop -> ( 1 / ( normop ` T ) ) e. RR ) |
57 |
56
|
recnd |
|- ( T =/= 0hop -> ( 1 / ( normop ` T ) ) e. CC ) |
58 |
|
homulass |
|- ( ( ( normop ` T ) e. CC /\ ( 1 / ( normop ` T ) ) e. CC /\ T : ~H --> ~H ) -> ( ( ( normop ` T ) x. ( 1 / ( normop ` T ) ) ) .op T ) = ( ( normop ` T ) .op ( ( 1 / ( normop ` T ) ) .op T ) ) ) |
59 |
51 7 58
|
mp3an13 |
|- ( ( 1 / ( normop ` T ) ) e. CC -> ( ( ( normop ` T ) x. ( 1 / ( normop ` T ) ) ) .op T ) = ( ( normop ` T ) .op ( ( 1 / ( normop ` T ) ) .op T ) ) ) |
60 |
57 59
|
syl |
|- ( T =/= 0hop -> ( ( ( normop ` T ) x. ( 1 / ( normop ` T ) ) ) .op T ) = ( ( normop ` T ) .op ( ( 1 / ( normop ` T ) ) .op T ) ) ) |
61 |
|
homulid2 |
|- ( T : ~H --> ~H -> ( 1 .op T ) = T ) |
62 |
7 61
|
mp1i |
|- ( T =/= 0hop -> ( 1 .op T ) = T ) |
63 |
54 60 62
|
3eqtr3d |
|- ( T =/= 0hop -> ( ( normop ` T ) .op ( ( 1 / ( normop ` T ) ) .op T ) ) = T ) |
64 |
46 63
|
sylan9eqr |
|- ( ( T =/= 0hop /\ ( u o. u ) = R ) -> ( ( normop ` T ) .op ( u o. u ) ) = T ) |
65 |
64
|
adantlr |
|- ( ( ( T =/= 0hop /\ u e. HrmOp ) /\ ( u o. u ) = R ) -> ( ( normop ` T ) .op ( u o. u ) ) = T ) |
66 |
43 65
|
eqtrd |
|- ( ( ( T =/= 0hop /\ u e. HrmOp ) /\ ( u o. u ) = R ) -> ( ( ( sqrt ` ( normop ` T ) ) .op u ) o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) = T ) |
67 |
66
|
adantrl |
|- ( ( ( T =/= 0hop /\ u e. HrmOp ) /\ ( 0hop <_op u /\ ( u o. u ) = R ) ) -> ( ( ( sqrt ` ( normop ` T ) ) .op u ) o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) = T ) |
68 |
|
breq2 |
|- ( v = ( ( sqrt ` ( normop ` T ) ) .op u ) -> ( 0hop <_op v <-> 0hop <_op ( ( sqrt ` ( normop ` T ) ) .op u ) ) ) |
69 |
|
coeq1 |
|- ( v = ( ( sqrt ` ( normop ` T ) ) .op u ) -> ( v o. v ) = ( ( ( sqrt ` ( normop ` T ) ) .op u ) o. v ) ) |
70 |
|
coeq2 |
|- ( v = ( ( sqrt ` ( normop ` T ) ) .op u ) -> ( ( ( sqrt ` ( normop ` T ) ) .op u ) o. v ) = ( ( ( sqrt ` ( normop ` T ) ) .op u ) o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) ) |
71 |
69 70
|
eqtrd |
|- ( v = ( ( sqrt ` ( normop ` T ) ) .op u ) -> ( v o. v ) = ( ( ( sqrt ` ( normop ` T ) ) .op u ) o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) ) |
72 |
71
|
eqeq1d |
|- ( v = ( ( sqrt ` ( normop ` T ) ) .op u ) -> ( ( v o. v ) = T <-> ( ( ( sqrt ` ( normop ` T ) ) .op u ) o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) = T ) ) |
73 |
68 72
|
anbi12d |
|- ( v = ( ( sqrt ` ( normop ` T ) ) .op u ) -> ( ( 0hop <_op v /\ ( v o. v ) = T ) <-> ( 0hop <_op ( ( sqrt ` ( normop ` T ) ) .op u ) /\ ( ( ( sqrt ` ( normop ` T ) ) .op u ) o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) = T ) ) ) |
74 |
73
|
rspcev |
|- ( ( ( ( sqrt ` ( normop ` T ) ) .op u ) e. HrmOp /\ ( 0hop <_op ( ( sqrt ` ( normop ` T ) ) .op u ) /\ ( ( ( sqrt ` ( normop ` T ) ) .op u ) o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) = T ) ) -> E. v e. HrmOp ( 0hop <_op v /\ ( v o. v ) = T ) ) |
75 |
14 20 67 74
|
syl12anc |
|- ( ( ( T =/= 0hop /\ u e. HrmOp ) /\ ( 0hop <_op u /\ ( u o. u ) = R ) ) -> E. v e. HrmOp ( 0hop <_op v /\ ( v o. v ) = T ) ) |
76 |
75 5
|
r19.29a |
|- ( T =/= 0hop -> E. v e. HrmOp ( 0hop <_op v /\ ( v o. v ) = T ) ) |