| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opsqrlem1.1 |
|- T e. HrmOp |
| 2 |
|
opsqrlem1.2 |
|- ( normop ` T ) e. RR |
| 3 |
|
opsqrlem1.3 |
|- 0hop <_op T |
| 4 |
|
opsqrlem1.4 |
|- R = ( ( 1 / ( normop ` T ) ) .op T ) |
| 5 |
|
opsqrlem1.5 |
|- ( T =/= 0hop -> E. u e. HrmOp ( 0hop <_op u /\ ( u o. u ) = R ) ) |
| 6 |
|
hmopf |
|- ( T e. HrmOp -> T : ~H --> ~H ) |
| 7 |
1 6
|
ax-mp |
|- T : ~H --> ~H |
| 8 |
|
nmopge0 |
|- ( T : ~H --> ~H -> 0 <_ ( normop ` T ) ) |
| 9 |
7 8
|
ax-mp |
|- 0 <_ ( normop ` T ) |
| 10 |
2
|
sqrtcli |
|- ( 0 <_ ( normop ` T ) -> ( sqrt ` ( normop ` T ) ) e. RR ) |
| 11 |
9 10
|
ax-mp |
|- ( sqrt ` ( normop ` T ) ) e. RR |
| 12 |
|
hmopm |
|- ( ( ( sqrt ` ( normop ` T ) ) e. RR /\ u e. HrmOp ) -> ( ( sqrt ` ( normop ` T ) ) .op u ) e. HrmOp ) |
| 13 |
11 12
|
mpan |
|- ( u e. HrmOp -> ( ( sqrt ` ( normop ` T ) ) .op u ) e. HrmOp ) |
| 14 |
13
|
ad2antlr |
|- ( ( ( T =/= 0hop /\ u e. HrmOp ) /\ ( 0hop <_op u /\ ( u o. u ) = R ) ) -> ( ( sqrt ` ( normop ` T ) ) .op u ) e. HrmOp ) |
| 15 |
2
|
sqrtge0i |
|- ( 0 <_ ( normop ` T ) -> 0 <_ ( sqrt ` ( normop ` T ) ) ) |
| 16 |
9 15
|
ax-mp |
|- 0 <_ ( sqrt ` ( normop ` T ) ) |
| 17 |
|
leopmuli |
|- ( ( ( ( sqrt ` ( normop ` T ) ) e. RR /\ u e. HrmOp ) /\ ( 0 <_ ( sqrt ` ( normop ` T ) ) /\ 0hop <_op u ) ) -> 0hop <_op ( ( sqrt ` ( normop ` T ) ) .op u ) ) |
| 18 |
16 17
|
mpanr1 |
|- ( ( ( ( sqrt ` ( normop ` T ) ) e. RR /\ u e. HrmOp ) /\ 0hop <_op u ) -> 0hop <_op ( ( sqrt ` ( normop ` T ) ) .op u ) ) |
| 19 |
11 18
|
mpanl1 |
|- ( ( u e. HrmOp /\ 0hop <_op u ) -> 0hop <_op ( ( sqrt ` ( normop ` T ) ) .op u ) ) |
| 20 |
19
|
ad2ant2lr |
|- ( ( ( T =/= 0hop /\ u e. HrmOp ) /\ ( 0hop <_op u /\ ( u o. u ) = R ) ) -> 0hop <_op ( ( sqrt ` ( normop ` T ) ) .op u ) ) |
| 21 |
|
hmopf |
|- ( u e. HrmOp -> u : ~H --> ~H ) |
| 22 |
11
|
recni |
|- ( sqrt ` ( normop ` T ) ) e. CC |
| 23 |
|
homulcl |
|- ( ( ( sqrt ` ( normop ` T ) ) e. CC /\ u : ~H --> ~H ) -> ( ( sqrt ` ( normop ` T ) ) .op u ) : ~H --> ~H ) |
| 24 |
22 23
|
mpan |
|- ( u : ~H --> ~H -> ( ( sqrt ` ( normop ` T ) ) .op u ) : ~H --> ~H ) |
| 25 |
|
homco1 |
|- ( ( ( sqrt ` ( normop ` T ) ) e. CC /\ u : ~H --> ~H /\ ( ( sqrt ` ( normop ` T ) ) .op u ) : ~H --> ~H ) -> ( ( ( sqrt ` ( normop ` T ) ) .op u ) o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) = ( ( sqrt ` ( normop ` T ) ) .op ( u o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) ) ) |
| 26 |
22 25
|
mp3an1 |
|- ( ( u : ~H --> ~H /\ ( ( sqrt ` ( normop ` T ) ) .op u ) : ~H --> ~H ) -> ( ( ( sqrt ` ( normop ` T ) ) .op u ) o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) = ( ( sqrt ` ( normop ` T ) ) .op ( u o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) ) ) |
| 27 |
21 24 26
|
syl2anc2 |
|- ( u e. HrmOp -> ( ( ( sqrt ` ( normop ` T ) ) .op u ) o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) = ( ( sqrt ` ( normop ` T ) ) .op ( u o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) ) ) |
| 28 |
|
hmoplin |
|- ( u e. HrmOp -> u e. LinOp ) |
| 29 |
|
homco2 |
|- ( ( ( sqrt ` ( normop ` T ) ) e. CC /\ u e. LinOp /\ u : ~H --> ~H ) -> ( u o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) = ( ( sqrt ` ( normop ` T ) ) .op ( u o. u ) ) ) |
| 30 |
22 29
|
mp3an1 |
|- ( ( u e. LinOp /\ u : ~H --> ~H ) -> ( u o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) = ( ( sqrt ` ( normop ` T ) ) .op ( u o. u ) ) ) |
| 31 |
28 21 30
|
syl2anc |
|- ( u e. HrmOp -> ( u o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) = ( ( sqrt ` ( normop ` T ) ) .op ( u o. u ) ) ) |
| 32 |
31
|
oveq2d |
|- ( u e. HrmOp -> ( ( sqrt ` ( normop ` T ) ) .op ( u o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) ) = ( ( sqrt ` ( normop ` T ) ) .op ( ( sqrt ` ( normop ` T ) ) .op ( u o. u ) ) ) ) |
| 33 |
|
fco |
|- ( ( u : ~H --> ~H /\ u : ~H --> ~H ) -> ( u o. u ) : ~H --> ~H ) |
| 34 |
21 21 33
|
syl2anc |
|- ( u e. HrmOp -> ( u o. u ) : ~H --> ~H ) |
| 35 |
|
homulass |
|- ( ( ( sqrt ` ( normop ` T ) ) e. CC /\ ( sqrt ` ( normop ` T ) ) e. CC /\ ( u o. u ) : ~H --> ~H ) -> ( ( ( sqrt ` ( normop ` T ) ) x. ( sqrt ` ( normop ` T ) ) ) .op ( u o. u ) ) = ( ( sqrt ` ( normop ` T ) ) .op ( ( sqrt ` ( normop ` T ) ) .op ( u o. u ) ) ) ) |
| 36 |
22 22 35
|
mp3an12 |
|- ( ( u o. u ) : ~H --> ~H -> ( ( ( sqrt ` ( normop ` T ) ) x. ( sqrt ` ( normop ` T ) ) ) .op ( u o. u ) ) = ( ( sqrt ` ( normop ` T ) ) .op ( ( sqrt ` ( normop ` T ) ) .op ( u o. u ) ) ) ) |
| 37 |
34 36
|
syl |
|- ( u e. HrmOp -> ( ( ( sqrt ` ( normop ` T ) ) x. ( sqrt ` ( normop ` T ) ) ) .op ( u o. u ) ) = ( ( sqrt ` ( normop ` T ) ) .op ( ( sqrt ` ( normop ` T ) ) .op ( u o. u ) ) ) ) |
| 38 |
2
|
sqrtthi |
|- ( 0 <_ ( normop ` T ) -> ( ( sqrt ` ( normop ` T ) ) x. ( sqrt ` ( normop ` T ) ) ) = ( normop ` T ) ) |
| 39 |
9 38
|
ax-mp |
|- ( ( sqrt ` ( normop ` T ) ) x. ( sqrt ` ( normop ` T ) ) ) = ( normop ` T ) |
| 40 |
39
|
oveq1i |
|- ( ( ( sqrt ` ( normop ` T ) ) x. ( sqrt ` ( normop ` T ) ) ) .op ( u o. u ) ) = ( ( normop ` T ) .op ( u o. u ) ) |
| 41 |
37 40
|
eqtr3di |
|- ( u e. HrmOp -> ( ( sqrt ` ( normop ` T ) ) .op ( ( sqrt ` ( normop ` T ) ) .op ( u o. u ) ) ) = ( ( normop ` T ) .op ( u o. u ) ) ) |
| 42 |
27 32 41
|
3eqtrd |
|- ( u e. HrmOp -> ( ( ( sqrt ` ( normop ` T ) ) .op u ) o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) = ( ( normop ` T ) .op ( u o. u ) ) ) |
| 43 |
42
|
ad2antlr |
|- ( ( ( T =/= 0hop /\ u e. HrmOp ) /\ ( u o. u ) = R ) -> ( ( ( sqrt ` ( normop ` T ) ) .op u ) o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) = ( ( normop ` T ) .op ( u o. u ) ) ) |
| 44 |
|
id |
|- ( ( u o. u ) = R -> ( u o. u ) = R ) |
| 45 |
44 4
|
eqtrdi |
|- ( ( u o. u ) = R -> ( u o. u ) = ( ( 1 / ( normop ` T ) ) .op T ) ) |
| 46 |
45
|
oveq2d |
|- ( ( u o. u ) = R -> ( ( normop ` T ) .op ( u o. u ) ) = ( ( normop ` T ) .op ( ( 1 / ( normop ` T ) ) .op T ) ) ) |
| 47 |
|
hmoplin |
|- ( T e. HrmOp -> T e. LinOp ) |
| 48 |
1 47
|
ax-mp |
|- T e. LinOp |
| 49 |
|
nmlnopne0 |
|- ( T e. LinOp -> ( ( normop ` T ) =/= 0 <-> T =/= 0hop ) ) |
| 50 |
48 49
|
ax-mp |
|- ( ( normop ` T ) =/= 0 <-> T =/= 0hop ) |
| 51 |
2
|
recni |
|- ( normop ` T ) e. CC |
| 52 |
51
|
recidzi |
|- ( ( normop ` T ) =/= 0 -> ( ( normop ` T ) x. ( 1 / ( normop ` T ) ) ) = 1 ) |
| 53 |
50 52
|
sylbir |
|- ( T =/= 0hop -> ( ( normop ` T ) x. ( 1 / ( normop ` T ) ) ) = 1 ) |
| 54 |
53
|
oveq1d |
|- ( T =/= 0hop -> ( ( ( normop ` T ) x. ( 1 / ( normop ` T ) ) ) .op T ) = ( 1 .op T ) ) |
| 55 |
2
|
rerecclzi |
|- ( ( normop ` T ) =/= 0 -> ( 1 / ( normop ` T ) ) e. RR ) |
| 56 |
50 55
|
sylbir |
|- ( T =/= 0hop -> ( 1 / ( normop ` T ) ) e. RR ) |
| 57 |
56
|
recnd |
|- ( T =/= 0hop -> ( 1 / ( normop ` T ) ) e. CC ) |
| 58 |
|
homulass |
|- ( ( ( normop ` T ) e. CC /\ ( 1 / ( normop ` T ) ) e. CC /\ T : ~H --> ~H ) -> ( ( ( normop ` T ) x. ( 1 / ( normop ` T ) ) ) .op T ) = ( ( normop ` T ) .op ( ( 1 / ( normop ` T ) ) .op T ) ) ) |
| 59 |
51 7 58
|
mp3an13 |
|- ( ( 1 / ( normop ` T ) ) e. CC -> ( ( ( normop ` T ) x. ( 1 / ( normop ` T ) ) ) .op T ) = ( ( normop ` T ) .op ( ( 1 / ( normop ` T ) ) .op T ) ) ) |
| 60 |
57 59
|
syl |
|- ( T =/= 0hop -> ( ( ( normop ` T ) x. ( 1 / ( normop ` T ) ) ) .op T ) = ( ( normop ` T ) .op ( ( 1 / ( normop ` T ) ) .op T ) ) ) |
| 61 |
|
homullid |
|- ( T : ~H --> ~H -> ( 1 .op T ) = T ) |
| 62 |
7 61
|
mp1i |
|- ( T =/= 0hop -> ( 1 .op T ) = T ) |
| 63 |
54 60 62
|
3eqtr3d |
|- ( T =/= 0hop -> ( ( normop ` T ) .op ( ( 1 / ( normop ` T ) ) .op T ) ) = T ) |
| 64 |
46 63
|
sylan9eqr |
|- ( ( T =/= 0hop /\ ( u o. u ) = R ) -> ( ( normop ` T ) .op ( u o. u ) ) = T ) |
| 65 |
64
|
adantlr |
|- ( ( ( T =/= 0hop /\ u e. HrmOp ) /\ ( u o. u ) = R ) -> ( ( normop ` T ) .op ( u o. u ) ) = T ) |
| 66 |
43 65
|
eqtrd |
|- ( ( ( T =/= 0hop /\ u e. HrmOp ) /\ ( u o. u ) = R ) -> ( ( ( sqrt ` ( normop ` T ) ) .op u ) o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) = T ) |
| 67 |
66
|
adantrl |
|- ( ( ( T =/= 0hop /\ u e. HrmOp ) /\ ( 0hop <_op u /\ ( u o. u ) = R ) ) -> ( ( ( sqrt ` ( normop ` T ) ) .op u ) o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) = T ) |
| 68 |
|
breq2 |
|- ( v = ( ( sqrt ` ( normop ` T ) ) .op u ) -> ( 0hop <_op v <-> 0hop <_op ( ( sqrt ` ( normop ` T ) ) .op u ) ) ) |
| 69 |
|
coeq1 |
|- ( v = ( ( sqrt ` ( normop ` T ) ) .op u ) -> ( v o. v ) = ( ( ( sqrt ` ( normop ` T ) ) .op u ) o. v ) ) |
| 70 |
|
coeq2 |
|- ( v = ( ( sqrt ` ( normop ` T ) ) .op u ) -> ( ( ( sqrt ` ( normop ` T ) ) .op u ) o. v ) = ( ( ( sqrt ` ( normop ` T ) ) .op u ) o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) ) |
| 71 |
69 70
|
eqtrd |
|- ( v = ( ( sqrt ` ( normop ` T ) ) .op u ) -> ( v o. v ) = ( ( ( sqrt ` ( normop ` T ) ) .op u ) o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) ) |
| 72 |
71
|
eqeq1d |
|- ( v = ( ( sqrt ` ( normop ` T ) ) .op u ) -> ( ( v o. v ) = T <-> ( ( ( sqrt ` ( normop ` T ) ) .op u ) o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) = T ) ) |
| 73 |
68 72
|
anbi12d |
|- ( v = ( ( sqrt ` ( normop ` T ) ) .op u ) -> ( ( 0hop <_op v /\ ( v o. v ) = T ) <-> ( 0hop <_op ( ( sqrt ` ( normop ` T ) ) .op u ) /\ ( ( ( sqrt ` ( normop ` T ) ) .op u ) o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) = T ) ) ) |
| 74 |
73
|
rspcev |
|- ( ( ( ( sqrt ` ( normop ` T ) ) .op u ) e. HrmOp /\ ( 0hop <_op ( ( sqrt ` ( normop ` T ) ) .op u ) /\ ( ( ( sqrt ` ( normop ` T ) ) .op u ) o. ( ( sqrt ` ( normop ` T ) ) .op u ) ) = T ) ) -> E. v e. HrmOp ( 0hop <_op v /\ ( v o. v ) = T ) ) |
| 75 |
14 20 67 74
|
syl12anc |
|- ( ( ( T =/= 0hop /\ u e. HrmOp ) /\ ( 0hop <_op u /\ ( u o. u ) = R ) ) -> E. v e. HrmOp ( 0hop <_op v /\ ( v o. v ) = T ) ) |
| 76 |
75 5
|
r19.29a |
|- ( T =/= 0hop -> E. v e. HrmOp ( 0hop <_op v /\ ( v o. v ) = T ) ) |