Metamath Proof Explorer


Theorem opsqrlem1

Description: Lemma for opsqri . (Contributed by NM, 9-Aug-2006) (New usage is discouraged.)

Ref Expression
Hypotheses opsqrlem1.1 𝑇 ∈ HrmOp
opsqrlem1.2 ( normop𝑇 ) ∈ ℝ
opsqrlem1.3 0hopop 𝑇
opsqrlem1.4 𝑅 = ( ( 1 / ( normop𝑇 ) ) ·op 𝑇 )
opsqrlem1.5 ( 𝑇 ≠ 0hop → ∃ 𝑢 ∈ HrmOp ( 0hopop 𝑢 ∧ ( 𝑢𝑢 ) = 𝑅 ) )
Assertion opsqrlem1 ( 𝑇 ≠ 0hop → ∃ 𝑣 ∈ HrmOp ( 0hopop 𝑣 ∧ ( 𝑣𝑣 ) = 𝑇 ) )

Proof

Step Hyp Ref Expression
1 opsqrlem1.1 𝑇 ∈ HrmOp
2 opsqrlem1.2 ( normop𝑇 ) ∈ ℝ
3 opsqrlem1.3 0hopop 𝑇
4 opsqrlem1.4 𝑅 = ( ( 1 / ( normop𝑇 ) ) ·op 𝑇 )
5 opsqrlem1.5 ( 𝑇 ≠ 0hop → ∃ 𝑢 ∈ HrmOp ( 0hopop 𝑢 ∧ ( 𝑢𝑢 ) = 𝑅 ) )
6 hmopf ( 𝑇 ∈ HrmOp → 𝑇 : ℋ ⟶ ℋ )
7 1 6 ax-mp 𝑇 : ℋ ⟶ ℋ
8 nmopge0 ( 𝑇 : ℋ ⟶ ℋ → 0 ≤ ( normop𝑇 ) )
9 7 8 ax-mp 0 ≤ ( normop𝑇 )
10 2 sqrtcli ( 0 ≤ ( normop𝑇 ) → ( √ ‘ ( normop𝑇 ) ) ∈ ℝ )
11 9 10 ax-mp ( √ ‘ ( normop𝑇 ) ) ∈ ℝ
12 hmopm ( ( ( √ ‘ ( normop𝑇 ) ) ∈ ℝ ∧ 𝑢 ∈ HrmOp ) → ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ∈ HrmOp )
13 11 12 mpan ( 𝑢 ∈ HrmOp → ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ∈ HrmOp )
14 13 ad2antlr ( ( ( 𝑇 ≠ 0hop𝑢 ∈ HrmOp ) ∧ ( 0hopop 𝑢 ∧ ( 𝑢𝑢 ) = 𝑅 ) ) → ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ∈ HrmOp )
15 2 sqrtge0i ( 0 ≤ ( normop𝑇 ) → 0 ≤ ( √ ‘ ( normop𝑇 ) ) )
16 9 15 ax-mp 0 ≤ ( √ ‘ ( normop𝑇 ) )
17 leopmuli ( ( ( ( √ ‘ ( normop𝑇 ) ) ∈ ℝ ∧ 𝑢 ∈ HrmOp ) ∧ ( 0 ≤ ( √ ‘ ( normop𝑇 ) ) ∧ 0hopop 𝑢 ) ) → 0hopop ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) )
18 16 17 mpanr1 ( ( ( ( √ ‘ ( normop𝑇 ) ) ∈ ℝ ∧ 𝑢 ∈ HrmOp ) ∧ 0hopop 𝑢 ) → 0hopop ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) )
19 11 18 mpanl1 ( ( 𝑢 ∈ HrmOp ∧ 0hopop 𝑢 ) → 0hopop ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) )
20 19 ad2ant2lr ( ( ( 𝑇 ≠ 0hop𝑢 ∈ HrmOp ) ∧ ( 0hopop 𝑢 ∧ ( 𝑢𝑢 ) = 𝑅 ) ) → 0hopop ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) )
21 hmopf ( 𝑢 ∈ HrmOp → 𝑢 : ℋ ⟶ ℋ )
22 11 recni ( √ ‘ ( normop𝑇 ) ) ∈ ℂ
23 homulcl ( ( ( √ ‘ ( normop𝑇 ) ) ∈ ℂ ∧ 𝑢 : ℋ ⟶ ℋ ) → ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) : ℋ ⟶ ℋ )
24 22 23 mpan ( 𝑢 : ℋ ⟶ ℋ → ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) : ℋ ⟶ ℋ )
25 homco1 ( ( ( √ ‘ ( normop𝑇 ) ) ∈ ℂ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) : ℋ ⟶ ℋ ) → ( ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ∘ ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ) = ( ( √ ‘ ( normop𝑇 ) ) ·op ( 𝑢 ∘ ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ) ) )
26 22 25 mp3an1 ( ( 𝑢 : ℋ ⟶ ℋ ∧ ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) : ℋ ⟶ ℋ ) → ( ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ∘ ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ) = ( ( √ ‘ ( normop𝑇 ) ) ·op ( 𝑢 ∘ ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ) ) )
27 21 24 26 syl2anc2 ( 𝑢 ∈ HrmOp → ( ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ∘ ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ) = ( ( √ ‘ ( normop𝑇 ) ) ·op ( 𝑢 ∘ ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ) ) )
28 hmoplin ( 𝑢 ∈ HrmOp → 𝑢 ∈ LinOp )
29 homco2 ( ( ( √ ‘ ( normop𝑇 ) ) ∈ ℂ ∧ 𝑢 ∈ LinOp ∧ 𝑢 : ℋ ⟶ ℋ ) → ( 𝑢 ∘ ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ) = ( ( √ ‘ ( normop𝑇 ) ) ·op ( 𝑢𝑢 ) ) )
30 22 29 mp3an1 ( ( 𝑢 ∈ LinOp ∧ 𝑢 : ℋ ⟶ ℋ ) → ( 𝑢 ∘ ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ) = ( ( √ ‘ ( normop𝑇 ) ) ·op ( 𝑢𝑢 ) ) )
31 28 21 30 syl2anc ( 𝑢 ∈ HrmOp → ( 𝑢 ∘ ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ) = ( ( √ ‘ ( normop𝑇 ) ) ·op ( 𝑢𝑢 ) ) )
32 31 oveq2d ( 𝑢 ∈ HrmOp → ( ( √ ‘ ( normop𝑇 ) ) ·op ( 𝑢 ∘ ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ) ) = ( ( √ ‘ ( normop𝑇 ) ) ·op ( ( √ ‘ ( normop𝑇 ) ) ·op ( 𝑢𝑢 ) ) ) )
33 fco ( ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ) → ( 𝑢𝑢 ) : ℋ ⟶ ℋ )
34 21 21 33 syl2anc ( 𝑢 ∈ HrmOp → ( 𝑢𝑢 ) : ℋ ⟶ ℋ )
35 homulass ( ( ( √ ‘ ( normop𝑇 ) ) ∈ ℂ ∧ ( √ ‘ ( normop𝑇 ) ) ∈ ℂ ∧ ( 𝑢𝑢 ) : ℋ ⟶ ℋ ) → ( ( ( √ ‘ ( normop𝑇 ) ) · ( √ ‘ ( normop𝑇 ) ) ) ·op ( 𝑢𝑢 ) ) = ( ( √ ‘ ( normop𝑇 ) ) ·op ( ( √ ‘ ( normop𝑇 ) ) ·op ( 𝑢𝑢 ) ) ) )
36 22 22 35 mp3an12 ( ( 𝑢𝑢 ) : ℋ ⟶ ℋ → ( ( ( √ ‘ ( normop𝑇 ) ) · ( √ ‘ ( normop𝑇 ) ) ) ·op ( 𝑢𝑢 ) ) = ( ( √ ‘ ( normop𝑇 ) ) ·op ( ( √ ‘ ( normop𝑇 ) ) ·op ( 𝑢𝑢 ) ) ) )
37 34 36 syl ( 𝑢 ∈ HrmOp → ( ( ( √ ‘ ( normop𝑇 ) ) · ( √ ‘ ( normop𝑇 ) ) ) ·op ( 𝑢𝑢 ) ) = ( ( √ ‘ ( normop𝑇 ) ) ·op ( ( √ ‘ ( normop𝑇 ) ) ·op ( 𝑢𝑢 ) ) ) )
38 2 sqrtthi ( 0 ≤ ( normop𝑇 ) → ( ( √ ‘ ( normop𝑇 ) ) · ( √ ‘ ( normop𝑇 ) ) ) = ( normop𝑇 ) )
39 9 38 ax-mp ( ( √ ‘ ( normop𝑇 ) ) · ( √ ‘ ( normop𝑇 ) ) ) = ( normop𝑇 )
40 39 oveq1i ( ( ( √ ‘ ( normop𝑇 ) ) · ( √ ‘ ( normop𝑇 ) ) ) ·op ( 𝑢𝑢 ) ) = ( ( normop𝑇 ) ·op ( 𝑢𝑢 ) )
41 37 40 eqtr3di ( 𝑢 ∈ HrmOp → ( ( √ ‘ ( normop𝑇 ) ) ·op ( ( √ ‘ ( normop𝑇 ) ) ·op ( 𝑢𝑢 ) ) ) = ( ( normop𝑇 ) ·op ( 𝑢𝑢 ) ) )
42 27 32 41 3eqtrd ( 𝑢 ∈ HrmOp → ( ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ∘ ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ) = ( ( normop𝑇 ) ·op ( 𝑢𝑢 ) ) )
43 42 ad2antlr ( ( ( 𝑇 ≠ 0hop𝑢 ∈ HrmOp ) ∧ ( 𝑢𝑢 ) = 𝑅 ) → ( ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ∘ ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ) = ( ( normop𝑇 ) ·op ( 𝑢𝑢 ) ) )
44 id ( ( 𝑢𝑢 ) = 𝑅 → ( 𝑢𝑢 ) = 𝑅 )
45 44 4 eqtrdi ( ( 𝑢𝑢 ) = 𝑅 → ( 𝑢𝑢 ) = ( ( 1 / ( normop𝑇 ) ) ·op 𝑇 ) )
46 45 oveq2d ( ( 𝑢𝑢 ) = 𝑅 → ( ( normop𝑇 ) ·op ( 𝑢𝑢 ) ) = ( ( normop𝑇 ) ·op ( ( 1 / ( normop𝑇 ) ) ·op 𝑇 ) ) )
47 hmoplin ( 𝑇 ∈ HrmOp → 𝑇 ∈ LinOp )
48 1 47 ax-mp 𝑇 ∈ LinOp
49 nmlnopne0 ( 𝑇 ∈ LinOp → ( ( normop𝑇 ) ≠ 0 ↔ 𝑇 ≠ 0hop ) )
50 48 49 ax-mp ( ( normop𝑇 ) ≠ 0 ↔ 𝑇 ≠ 0hop )
51 2 recni ( normop𝑇 ) ∈ ℂ
52 51 recidzi ( ( normop𝑇 ) ≠ 0 → ( ( normop𝑇 ) · ( 1 / ( normop𝑇 ) ) ) = 1 )
53 50 52 sylbir ( 𝑇 ≠ 0hop → ( ( normop𝑇 ) · ( 1 / ( normop𝑇 ) ) ) = 1 )
54 53 oveq1d ( 𝑇 ≠ 0hop → ( ( ( normop𝑇 ) · ( 1 / ( normop𝑇 ) ) ) ·op 𝑇 ) = ( 1 ·op 𝑇 ) )
55 2 rerecclzi ( ( normop𝑇 ) ≠ 0 → ( 1 / ( normop𝑇 ) ) ∈ ℝ )
56 50 55 sylbir ( 𝑇 ≠ 0hop → ( 1 / ( normop𝑇 ) ) ∈ ℝ )
57 56 recnd ( 𝑇 ≠ 0hop → ( 1 / ( normop𝑇 ) ) ∈ ℂ )
58 homulass ( ( ( normop𝑇 ) ∈ ℂ ∧ ( 1 / ( normop𝑇 ) ) ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ( ( normop𝑇 ) · ( 1 / ( normop𝑇 ) ) ) ·op 𝑇 ) = ( ( normop𝑇 ) ·op ( ( 1 / ( normop𝑇 ) ) ·op 𝑇 ) ) )
59 51 7 58 mp3an13 ( ( 1 / ( normop𝑇 ) ) ∈ ℂ → ( ( ( normop𝑇 ) · ( 1 / ( normop𝑇 ) ) ) ·op 𝑇 ) = ( ( normop𝑇 ) ·op ( ( 1 / ( normop𝑇 ) ) ·op 𝑇 ) ) )
60 57 59 syl ( 𝑇 ≠ 0hop → ( ( ( normop𝑇 ) · ( 1 / ( normop𝑇 ) ) ) ·op 𝑇 ) = ( ( normop𝑇 ) ·op ( ( 1 / ( normop𝑇 ) ) ·op 𝑇 ) ) )
61 homulid2 ( 𝑇 : ℋ ⟶ ℋ → ( 1 ·op 𝑇 ) = 𝑇 )
62 7 61 mp1i ( 𝑇 ≠ 0hop → ( 1 ·op 𝑇 ) = 𝑇 )
63 54 60 62 3eqtr3d ( 𝑇 ≠ 0hop → ( ( normop𝑇 ) ·op ( ( 1 / ( normop𝑇 ) ) ·op 𝑇 ) ) = 𝑇 )
64 46 63 sylan9eqr ( ( 𝑇 ≠ 0hop ∧ ( 𝑢𝑢 ) = 𝑅 ) → ( ( normop𝑇 ) ·op ( 𝑢𝑢 ) ) = 𝑇 )
65 64 adantlr ( ( ( 𝑇 ≠ 0hop𝑢 ∈ HrmOp ) ∧ ( 𝑢𝑢 ) = 𝑅 ) → ( ( normop𝑇 ) ·op ( 𝑢𝑢 ) ) = 𝑇 )
66 43 65 eqtrd ( ( ( 𝑇 ≠ 0hop𝑢 ∈ HrmOp ) ∧ ( 𝑢𝑢 ) = 𝑅 ) → ( ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ∘ ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ) = 𝑇 )
67 66 adantrl ( ( ( 𝑇 ≠ 0hop𝑢 ∈ HrmOp ) ∧ ( 0hopop 𝑢 ∧ ( 𝑢𝑢 ) = 𝑅 ) ) → ( ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ∘ ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ) = 𝑇 )
68 breq2 ( 𝑣 = ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) → ( 0hopop 𝑣 ↔ 0hopop ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ) )
69 coeq1 ( 𝑣 = ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) → ( 𝑣𝑣 ) = ( ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ∘ 𝑣 ) )
70 coeq2 ( 𝑣 = ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) → ( ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ∘ 𝑣 ) = ( ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ∘ ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ) )
71 69 70 eqtrd ( 𝑣 = ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) → ( 𝑣𝑣 ) = ( ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ∘ ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ) )
72 71 eqeq1d ( 𝑣 = ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) → ( ( 𝑣𝑣 ) = 𝑇 ↔ ( ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ∘ ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ) = 𝑇 ) )
73 68 72 anbi12d ( 𝑣 = ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) → ( ( 0hopop 𝑣 ∧ ( 𝑣𝑣 ) = 𝑇 ) ↔ ( 0hopop ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ∧ ( ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ∘ ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ) = 𝑇 ) ) )
74 73 rspcev ( ( ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ∈ HrmOp ∧ ( 0hopop ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ∧ ( ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ∘ ( ( √ ‘ ( normop𝑇 ) ) ·op 𝑢 ) ) = 𝑇 ) ) → ∃ 𝑣 ∈ HrmOp ( 0hopop 𝑣 ∧ ( 𝑣𝑣 ) = 𝑇 ) )
75 14 20 67 74 syl12anc ( ( ( 𝑇 ≠ 0hop𝑢 ∈ HrmOp ) ∧ ( 0hopop 𝑢 ∧ ( 𝑢𝑢 ) = 𝑅 ) ) → ∃ 𝑣 ∈ HrmOp ( 0hopop 𝑣 ∧ ( 𝑣𝑣 ) = 𝑇 ) )
76 75 5 r19.29a ( 𝑇 ≠ 0hop → ∃ 𝑣 ∈ HrmOp ( 0hopop 𝑣 ∧ ( 𝑣𝑣 ) = 𝑇 ) )