Step |
Hyp |
Ref |
Expression |
1 |
|
opsqrlem1.1 |
⊢ 𝑇 ∈ HrmOp |
2 |
|
opsqrlem1.2 |
⊢ ( normop ‘ 𝑇 ) ∈ ℝ |
3 |
|
opsqrlem1.3 |
⊢ 0hop ≤op 𝑇 |
4 |
|
opsqrlem1.4 |
⊢ 𝑅 = ( ( 1 / ( normop ‘ 𝑇 ) ) ·op 𝑇 ) |
5 |
|
opsqrlem1.5 |
⊢ ( 𝑇 ≠ 0hop → ∃ 𝑢 ∈ HrmOp ( 0hop ≤op 𝑢 ∧ ( 𝑢 ∘ 𝑢 ) = 𝑅 ) ) |
6 |
|
hmopf |
⊢ ( 𝑇 ∈ HrmOp → 𝑇 : ℋ ⟶ ℋ ) |
7 |
1 6
|
ax-mp |
⊢ 𝑇 : ℋ ⟶ ℋ |
8 |
|
nmopge0 |
⊢ ( 𝑇 : ℋ ⟶ ℋ → 0 ≤ ( normop ‘ 𝑇 ) ) |
9 |
7 8
|
ax-mp |
⊢ 0 ≤ ( normop ‘ 𝑇 ) |
10 |
2
|
sqrtcli |
⊢ ( 0 ≤ ( normop ‘ 𝑇 ) → ( √ ‘ ( normop ‘ 𝑇 ) ) ∈ ℝ ) |
11 |
9 10
|
ax-mp |
⊢ ( √ ‘ ( normop ‘ 𝑇 ) ) ∈ ℝ |
12 |
|
hmopm |
⊢ ( ( ( √ ‘ ( normop ‘ 𝑇 ) ) ∈ ℝ ∧ 𝑢 ∈ HrmOp ) → ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ∈ HrmOp ) |
13 |
11 12
|
mpan |
⊢ ( 𝑢 ∈ HrmOp → ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ∈ HrmOp ) |
14 |
13
|
ad2antlr |
⊢ ( ( ( 𝑇 ≠ 0hop ∧ 𝑢 ∈ HrmOp ) ∧ ( 0hop ≤op 𝑢 ∧ ( 𝑢 ∘ 𝑢 ) = 𝑅 ) ) → ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ∈ HrmOp ) |
15 |
2
|
sqrtge0i |
⊢ ( 0 ≤ ( normop ‘ 𝑇 ) → 0 ≤ ( √ ‘ ( normop ‘ 𝑇 ) ) ) |
16 |
9 15
|
ax-mp |
⊢ 0 ≤ ( √ ‘ ( normop ‘ 𝑇 ) ) |
17 |
|
leopmuli |
⊢ ( ( ( ( √ ‘ ( normop ‘ 𝑇 ) ) ∈ ℝ ∧ 𝑢 ∈ HrmOp ) ∧ ( 0 ≤ ( √ ‘ ( normop ‘ 𝑇 ) ) ∧ 0hop ≤op 𝑢 ) ) → 0hop ≤op ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ) |
18 |
16 17
|
mpanr1 |
⊢ ( ( ( ( √ ‘ ( normop ‘ 𝑇 ) ) ∈ ℝ ∧ 𝑢 ∈ HrmOp ) ∧ 0hop ≤op 𝑢 ) → 0hop ≤op ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ) |
19 |
11 18
|
mpanl1 |
⊢ ( ( 𝑢 ∈ HrmOp ∧ 0hop ≤op 𝑢 ) → 0hop ≤op ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ) |
20 |
19
|
ad2ant2lr |
⊢ ( ( ( 𝑇 ≠ 0hop ∧ 𝑢 ∈ HrmOp ) ∧ ( 0hop ≤op 𝑢 ∧ ( 𝑢 ∘ 𝑢 ) = 𝑅 ) ) → 0hop ≤op ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ) |
21 |
|
hmopf |
⊢ ( 𝑢 ∈ HrmOp → 𝑢 : ℋ ⟶ ℋ ) |
22 |
11
|
recni |
⊢ ( √ ‘ ( normop ‘ 𝑇 ) ) ∈ ℂ |
23 |
|
homulcl |
⊢ ( ( ( √ ‘ ( normop ‘ 𝑇 ) ) ∈ ℂ ∧ 𝑢 : ℋ ⟶ ℋ ) → ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) : ℋ ⟶ ℋ ) |
24 |
22 23
|
mpan |
⊢ ( 𝑢 : ℋ ⟶ ℋ → ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) : ℋ ⟶ ℋ ) |
25 |
|
homco1 |
⊢ ( ( ( √ ‘ ( normop ‘ 𝑇 ) ) ∈ ℂ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) : ℋ ⟶ ℋ ) → ( ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ∘ ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ) = ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op ( 𝑢 ∘ ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ) ) ) |
26 |
22 25
|
mp3an1 |
⊢ ( ( 𝑢 : ℋ ⟶ ℋ ∧ ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) : ℋ ⟶ ℋ ) → ( ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ∘ ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ) = ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op ( 𝑢 ∘ ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ) ) ) |
27 |
21 24 26
|
syl2anc2 |
⊢ ( 𝑢 ∈ HrmOp → ( ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ∘ ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ) = ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op ( 𝑢 ∘ ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ) ) ) |
28 |
|
hmoplin |
⊢ ( 𝑢 ∈ HrmOp → 𝑢 ∈ LinOp ) |
29 |
|
homco2 |
⊢ ( ( ( √ ‘ ( normop ‘ 𝑇 ) ) ∈ ℂ ∧ 𝑢 ∈ LinOp ∧ 𝑢 : ℋ ⟶ ℋ ) → ( 𝑢 ∘ ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ) = ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op ( 𝑢 ∘ 𝑢 ) ) ) |
30 |
22 29
|
mp3an1 |
⊢ ( ( 𝑢 ∈ LinOp ∧ 𝑢 : ℋ ⟶ ℋ ) → ( 𝑢 ∘ ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ) = ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op ( 𝑢 ∘ 𝑢 ) ) ) |
31 |
28 21 30
|
syl2anc |
⊢ ( 𝑢 ∈ HrmOp → ( 𝑢 ∘ ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ) = ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op ( 𝑢 ∘ 𝑢 ) ) ) |
32 |
31
|
oveq2d |
⊢ ( 𝑢 ∈ HrmOp → ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op ( 𝑢 ∘ ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ) ) = ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op ( 𝑢 ∘ 𝑢 ) ) ) ) |
33 |
|
fco |
⊢ ( ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ) → ( 𝑢 ∘ 𝑢 ) : ℋ ⟶ ℋ ) |
34 |
21 21 33
|
syl2anc |
⊢ ( 𝑢 ∈ HrmOp → ( 𝑢 ∘ 𝑢 ) : ℋ ⟶ ℋ ) |
35 |
|
homulass |
⊢ ( ( ( √ ‘ ( normop ‘ 𝑇 ) ) ∈ ℂ ∧ ( √ ‘ ( normop ‘ 𝑇 ) ) ∈ ℂ ∧ ( 𝑢 ∘ 𝑢 ) : ℋ ⟶ ℋ ) → ( ( ( √ ‘ ( normop ‘ 𝑇 ) ) · ( √ ‘ ( normop ‘ 𝑇 ) ) ) ·op ( 𝑢 ∘ 𝑢 ) ) = ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op ( 𝑢 ∘ 𝑢 ) ) ) ) |
36 |
22 22 35
|
mp3an12 |
⊢ ( ( 𝑢 ∘ 𝑢 ) : ℋ ⟶ ℋ → ( ( ( √ ‘ ( normop ‘ 𝑇 ) ) · ( √ ‘ ( normop ‘ 𝑇 ) ) ) ·op ( 𝑢 ∘ 𝑢 ) ) = ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op ( 𝑢 ∘ 𝑢 ) ) ) ) |
37 |
34 36
|
syl |
⊢ ( 𝑢 ∈ HrmOp → ( ( ( √ ‘ ( normop ‘ 𝑇 ) ) · ( √ ‘ ( normop ‘ 𝑇 ) ) ) ·op ( 𝑢 ∘ 𝑢 ) ) = ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op ( 𝑢 ∘ 𝑢 ) ) ) ) |
38 |
2
|
sqrtthi |
⊢ ( 0 ≤ ( normop ‘ 𝑇 ) → ( ( √ ‘ ( normop ‘ 𝑇 ) ) · ( √ ‘ ( normop ‘ 𝑇 ) ) ) = ( normop ‘ 𝑇 ) ) |
39 |
9 38
|
ax-mp |
⊢ ( ( √ ‘ ( normop ‘ 𝑇 ) ) · ( √ ‘ ( normop ‘ 𝑇 ) ) ) = ( normop ‘ 𝑇 ) |
40 |
39
|
oveq1i |
⊢ ( ( ( √ ‘ ( normop ‘ 𝑇 ) ) · ( √ ‘ ( normop ‘ 𝑇 ) ) ) ·op ( 𝑢 ∘ 𝑢 ) ) = ( ( normop ‘ 𝑇 ) ·op ( 𝑢 ∘ 𝑢 ) ) |
41 |
37 40
|
eqtr3di |
⊢ ( 𝑢 ∈ HrmOp → ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op ( 𝑢 ∘ 𝑢 ) ) ) = ( ( normop ‘ 𝑇 ) ·op ( 𝑢 ∘ 𝑢 ) ) ) |
42 |
27 32 41
|
3eqtrd |
⊢ ( 𝑢 ∈ HrmOp → ( ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ∘ ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ) = ( ( normop ‘ 𝑇 ) ·op ( 𝑢 ∘ 𝑢 ) ) ) |
43 |
42
|
ad2antlr |
⊢ ( ( ( 𝑇 ≠ 0hop ∧ 𝑢 ∈ HrmOp ) ∧ ( 𝑢 ∘ 𝑢 ) = 𝑅 ) → ( ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ∘ ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ) = ( ( normop ‘ 𝑇 ) ·op ( 𝑢 ∘ 𝑢 ) ) ) |
44 |
|
id |
⊢ ( ( 𝑢 ∘ 𝑢 ) = 𝑅 → ( 𝑢 ∘ 𝑢 ) = 𝑅 ) |
45 |
44 4
|
eqtrdi |
⊢ ( ( 𝑢 ∘ 𝑢 ) = 𝑅 → ( 𝑢 ∘ 𝑢 ) = ( ( 1 / ( normop ‘ 𝑇 ) ) ·op 𝑇 ) ) |
46 |
45
|
oveq2d |
⊢ ( ( 𝑢 ∘ 𝑢 ) = 𝑅 → ( ( normop ‘ 𝑇 ) ·op ( 𝑢 ∘ 𝑢 ) ) = ( ( normop ‘ 𝑇 ) ·op ( ( 1 / ( normop ‘ 𝑇 ) ) ·op 𝑇 ) ) ) |
47 |
|
hmoplin |
⊢ ( 𝑇 ∈ HrmOp → 𝑇 ∈ LinOp ) |
48 |
1 47
|
ax-mp |
⊢ 𝑇 ∈ LinOp |
49 |
|
nmlnopne0 |
⊢ ( 𝑇 ∈ LinOp → ( ( normop ‘ 𝑇 ) ≠ 0 ↔ 𝑇 ≠ 0hop ) ) |
50 |
48 49
|
ax-mp |
⊢ ( ( normop ‘ 𝑇 ) ≠ 0 ↔ 𝑇 ≠ 0hop ) |
51 |
2
|
recni |
⊢ ( normop ‘ 𝑇 ) ∈ ℂ |
52 |
51
|
recidzi |
⊢ ( ( normop ‘ 𝑇 ) ≠ 0 → ( ( normop ‘ 𝑇 ) · ( 1 / ( normop ‘ 𝑇 ) ) ) = 1 ) |
53 |
50 52
|
sylbir |
⊢ ( 𝑇 ≠ 0hop → ( ( normop ‘ 𝑇 ) · ( 1 / ( normop ‘ 𝑇 ) ) ) = 1 ) |
54 |
53
|
oveq1d |
⊢ ( 𝑇 ≠ 0hop → ( ( ( normop ‘ 𝑇 ) · ( 1 / ( normop ‘ 𝑇 ) ) ) ·op 𝑇 ) = ( 1 ·op 𝑇 ) ) |
55 |
2
|
rerecclzi |
⊢ ( ( normop ‘ 𝑇 ) ≠ 0 → ( 1 / ( normop ‘ 𝑇 ) ) ∈ ℝ ) |
56 |
50 55
|
sylbir |
⊢ ( 𝑇 ≠ 0hop → ( 1 / ( normop ‘ 𝑇 ) ) ∈ ℝ ) |
57 |
56
|
recnd |
⊢ ( 𝑇 ≠ 0hop → ( 1 / ( normop ‘ 𝑇 ) ) ∈ ℂ ) |
58 |
|
homulass |
⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℂ ∧ ( 1 / ( normop ‘ 𝑇 ) ) ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ( ( normop ‘ 𝑇 ) · ( 1 / ( normop ‘ 𝑇 ) ) ) ·op 𝑇 ) = ( ( normop ‘ 𝑇 ) ·op ( ( 1 / ( normop ‘ 𝑇 ) ) ·op 𝑇 ) ) ) |
59 |
51 7 58
|
mp3an13 |
⊢ ( ( 1 / ( normop ‘ 𝑇 ) ) ∈ ℂ → ( ( ( normop ‘ 𝑇 ) · ( 1 / ( normop ‘ 𝑇 ) ) ) ·op 𝑇 ) = ( ( normop ‘ 𝑇 ) ·op ( ( 1 / ( normop ‘ 𝑇 ) ) ·op 𝑇 ) ) ) |
60 |
57 59
|
syl |
⊢ ( 𝑇 ≠ 0hop → ( ( ( normop ‘ 𝑇 ) · ( 1 / ( normop ‘ 𝑇 ) ) ) ·op 𝑇 ) = ( ( normop ‘ 𝑇 ) ·op ( ( 1 / ( normop ‘ 𝑇 ) ) ·op 𝑇 ) ) ) |
61 |
|
homulid2 |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 1 ·op 𝑇 ) = 𝑇 ) |
62 |
7 61
|
mp1i |
⊢ ( 𝑇 ≠ 0hop → ( 1 ·op 𝑇 ) = 𝑇 ) |
63 |
54 60 62
|
3eqtr3d |
⊢ ( 𝑇 ≠ 0hop → ( ( normop ‘ 𝑇 ) ·op ( ( 1 / ( normop ‘ 𝑇 ) ) ·op 𝑇 ) ) = 𝑇 ) |
64 |
46 63
|
sylan9eqr |
⊢ ( ( 𝑇 ≠ 0hop ∧ ( 𝑢 ∘ 𝑢 ) = 𝑅 ) → ( ( normop ‘ 𝑇 ) ·op ( 𝑢 ∘ 𝑢 ) ) = 𝑇 ) |
65 |
64
|
adantlr |
⊢ ( ( ( 𝑇 ≠ 0hop ∧ 𝑢 ∈ HrmOp ) ∧ ( 𝑢 ∘ 𝑢 ) = 𝑅 ) → ( ( normop ‘ 𝑇 ) ·op ( 𝑢 ∘ 𝑢 ) ) = 𝑇 ) |
66 |
43 65
|
eqtrd |
⊢ ( ( ( 𝑇 ≠ 0hop ∧ 𝑢 ∈ HrmOp ) ∧ ( 𝑢 ∘ 𝑢 ) = 𝑅 ) → ( ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ∘ ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ) = 𝑇 ) |
67 |
66
|
adantrl |
⊢ ( ( ( 𝑇 ≠ 0hop ∧ 𝑢 ∈ HrmOp ) ∧ ( 0hop ≤op 𝑢 ∧ ( 𝑢 ∘ 𝑢 ) = 𝑅 ) ) → ( ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ∘ ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ) = 𝑇 ) |
68 |
|
breq2 |
⊢ ( 𝑣 = ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) → ( 0hop ≤op 𝑣 ↔ 0hop ≤op ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ) ) |
69 |
|
coeq1 |
⊢ ( 𝑣 = ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) → ( 𝑣 ∘ 𝑣 ) = ( ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ∘ 𝑣 ) ) |
70 |
|
coeq2 |
⊢ ( 𝑣 = ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) → ( ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ∘ 𝑣 ) = ( ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ∘ ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ) ) |
71 |
69 70
|
eqtrd |
⊢ ( 𝑣 = ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) → ( 𝑣 ∘ 𝑣 ) = ( ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ∘ ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ) ) |
72 |
71
|
eqeq1d |
⊢ ( 𝑣 = ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) → ( ( 𝑣 ∘ 𝑣 ) = 𝑇 ↔ ( ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ∘ ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ) = 𝑇 ) ) |
73 |
68 72
|
anbi12d |
⊢ ( 𝑣 = ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) → ( ( 0hop ≤op 𝑣 ∧ ( 𝑣 ∘ 𝑣 ) = 𝑇 ) ↔ ( 0hop ≤op ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ∧ ( ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ∘ ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ) = 𝑇 ) ) ) |
74 |
73
|
rspcev |
⊢ ( ( ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ∈ HrmOp ∧ ( 0hop ≤op ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ∧ ( ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ∘ ( ( √ ‘ ( normop ‘ 𝑇 ) ) ·op 𝑢 ) ) = 𝑇 ) ) → ∃ 𝑣 ∈ HrmOp ( 0hop ≤op 𝑣 ∧ ( 𝑣 ∘ 𝑣 ) = 𝑇 ) ) |
75 |
14 20 67 74
|
syl12anc |
⊢ ( ( ( 𝑇 ≠ 0hop ∧ 𝑢 ∈ HrmOp ) ∧ ( 0hop ≤op 𝑢 ∧ ( 𝑢 ∘ 𝑢 ) = 𝑅 ) ) → ∃ 𝑣 ∈ HrmOp ( 0hop ≤op 𝑣 ∧ ( 𝑣 ∘ 𝑣 ) = 𝑇 ) ) |
76 |
75 5
|
r19.29a |
⊢ ( 𝑇 ≠ 0hop → ∃ 𝑣 ∈ HrmOp ( 0hop ≤op 𝑣 ∧ ( 𝑣 ∘ 𝑣 ) = 𝑇 ) ) |