Metamath Proof Explorer


Theorem leopnmid

Description: A bounded Hermitian operator is less than or equal to its norm times the identity operator. (Contributed by NM, 11-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion leopnmid
|- ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) -> T <_op ( ( normop ` T ) .op Iop ) )

Proof

Step Hyp Ref Expression
1 hmopre
 |-  ( ( T e. HrmOp /\ x e. ~H ) -> ( ( T ` x ) .ih x ) e. RR )
2 1 adantlr
 |-  ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( T ` x ) .ih x ) e. RR )
3 1 recnd
 |-  ( ( T e. HrmOp /\ x e. ~H ) -> ( ( T ` x ) .ih x ) e. CC )
4 3 abscld
 |-  ( ( T e. HrmOp /\ x e. ~H ) -> ( abs ` ( ( T ` x ) .ih x ) ) e. RR )
5 4 adantlr
 |-  ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( abs ` ( ( T ` x ) .ih x ) ) e. RR )
6 idhmop
 |-  Iop e. HrmOp
7 hmopm
 |-  ( ( ( normop ` T ) e. RR /\ Iop e. HrmOp ) -> ( ( normop ` T ) .op Iop ) e. HrmOp )
8 6 7 mpan2
 |-  ( ( normop ` T ) e. RR -> ( ( normop ` T ) .op Iop ) e. HrmOp )
9 hmopre
 |-  ( ( ( ( normop ` T ) .op Iop ) e. HrmOp /\ x e. ~H ) -> ( ( ( ( normop ` T ) .op Iop ) ` x ) .ih x ) e. RR )
10 8 9 sylan
 |-  ( ( ( normop ` T ) e. RR /\ x e. ~H ) -> ( ( ( ( normop ` T ) .op Iop ) ` x ) .ih x ) e. RR )
11 10 adantll
 |-  ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( ( ( normop ` T ) .op Iop ) ` x ) .ih x ) e. RR )
12 1 leabsd
 |-  ( ( T e. HrmOp /\ x e. ~H ) -> ( ( T ` x ) .ih x ) <_ ( abs ` ( ( T ` x ) .ih x ) ) )
13 12 adantlr
 |-  ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( T ` x ) .ih x ) <_ ( abs ` ( ( T ` x ) .ih x ) ) )
14 hmopf
 |-  ( T e. HrmOp -> T : ~H --> ~H )
15 ffvelrn
 |-  ( ( T : ~H --> ~H /\ x e. ~H ) -> ( T ` x ) e. ~H )
16 normcl
 |-  ( ( T ` x ) e. ~H -> ( normh ` ( T ` x ) ) e. RR )
17 15 16 syl
 |-  ( ( T : ~H --> ~H /\ x e. ~H ) -> ( normh ` ( T ` x ) ) e. RR )
18 14 17 sylan
 |-  ( ( T e. HrmOp /\ x e. ~H ) -> ( normh ` ( T ` x ) ) e. RR )
19 18 adantlr
 |-  ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( normh ` ( T ` x ) ) e. RR )
20 normcl
 |-  ( x e. ~H -> ( normh ` x ) e. RR )
21 20 adantl
 |-  ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( normh ` x ) e. RR )
22 19 21 remulcld
 |-  ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( normh ` ( T ` x ) ) x. ( normh ` x ) ) e. RR )
23 14 15 sylan
 |-  ( ( T e. HrmOp /\ x e. ~H ) -> ( T ` x ) e. ~H )
24 bcs
 |-  ( ( ( T ` x ) e. ~H /\ x e. ~H ) -> ( abs ` ( ( T ` x ) .ih x ) ) <_ ( ( normh ` ( T ` x ) ) x. ( normh ` x ) ) )
25 23 24 sylancom
 |-  ( ( T e. HrmOp /\ x e. ~H ) -> ( abs ` ( ( T ` x ) .ih x ) ) <_ ( ( normh ` ( T ` x ) ) x. ( normh ` x ) ) )
26 25 adantlr
 |-  ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( abs ` ( ( T ` x ) .ih x ) ) <_ ( ( normh ` ( T ` x ) ) x. ( normh ` x ) ) )
27 remulcl
 |-  ( ( ( normop ` T ) e. RR /\ ( normh ` x ) e. RR ) -> ( ( normop ` T ) x. ( normh ` x ) ) e. RR )
28 20 27 sylan2
 |-  ( ( ( normop ` T ) e. RR /\ x e. ~H ) -> ( ( normop ` T ) x. ( normh ` x ) ) e. RR )
29 28 adantll
 |-  ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( normop ` T ) x. ( normh ` x ) ) e. RR )
30 normge0
 |-  ( x e. ~H -> 0 <_ ( normh ` x ) )
31 20 30 jca
 |-  ( x e. ~H -> ( ( normh ` x ) e. RR /\ 0 <_ ( normh ` x ) ) )
32 31 adantl
 |-  ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( normh ` x ) e. RR /\ 0 <_ ( normh ` x ) ) )
33 hmoplin
 |-  ( T e. HrmOp -> T e. LinOp )
34 elbdop2
 |-  ( T e. BndLinOp <-> ( T e. LinOp /\ ( normop ` T ) e. RR ) )
35 34 biimpri
 |-  ( ( T e. LinOp /\ ( normop ` T ) e. RR ) -> T e. BndLinOp )
36 33 35 sylan
 |-  ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) -> T e. BndLinOp )
37 nmbdoplb
 |-  ( ( T e. BndLinOp /\ x e. ~H ) -> ( normh ` ( T ` x ) ) <_ ( ( normop ` T ) x. ( normh ` x ) ) )
38 36 37 sylan
 |-  ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( normh ` ( T ` x ) ) <_ ( ( normop ` T ) x. ( normh ` x ) ) )
39 lemul1a
 |-  ( ( ( ( normh ` ( T ` x ) ) e. RR /\ ( ( normop ` T ) x. ( normh ` x ) ) e. RR /\ ( ( normh ` x ) e. RR /\ 0 <_ ( normh ` x ) ) ) /\ ( normh ` ( T ` x ) ) <_ ( ( normop ` T ) x. ( normh ` x ) ) ) -> ( ( normh ` ( T ` x ) ) x. ( normh ` x ) ) <_ ( ( ( normop ` T ) x. ( normh ` x ) ) x. ( normh ` x ) ) )
40 19 29 32 38 39 syl31anc
 |-  ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( normh ` ( T ` x ) ) x. ( normh ` x ) ) <_ ( ( ( normop ` T ) x. ( normh ` x ) ) x. ( normh ` x ) ) )
41 recn
 |-  ( ( normop ` T ) e. RR -> ( normop ` T ) e. CC )
42 41 ad2antlr
 |-  ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( normop ` T ) e. CC )
43 21 recnd
 |-  ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( normh ` x ) e. CC )
44 42 43 43 mulassd
 |-  ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( ( normop ` T ) x. ( normh ` x ) ) x. ( normh ` x ) ) = ( ( normop ` T ) x. ( ( normh ` x ) x. ( normh ` x ) ) ) )
45 simpr
 |-  ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> x e. ~H )
46 ax-his3
 |-  ( ( ( normop ` T ) e. CC /\ x e. ~H /\ x e. ~H ) -> ( ( ( normop ` T ) .h x ) .ih x ) = ( ( normop ` T ) x. ( x .ih x ) ) )
47 42 45 45 46 syl3anc
 |-  ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( ( normop ` T ) .h x ) .ih x ) = ( ( normop ` T ) x. ( x .ih x ) ) )
48 20 recnd
 |-  ( x e. ~H -> ( normh ` x ) e. CC )
49 48 sqvald
 |-  ( x e. ~H -> ( ( normh ` x ) ^ 2 ) = ( ( normh ` x ) x. ( normh ` x ) ) )
50 normsq
 |-  ( x e. ~H -> ( ( normh ` x ) ^ 2 ) = ( x .ih x ) )
51 49 50 eqtr3d
 |-  ( x e. ~H -> ( ( normh ` x ) x. ( normh ` x ) ) = ( x .ih x ) )
52 51 oveq2d
 |-  ( x e. ~H -> ( ( normop ` T ) x. ( ( normh ` x ) x. ( normh ` x ) ) ) = ( ( normop ` T ) x. ( x .ih x ) ) )
53 52 adantl
 |-  ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( normop ` T ) x. ( ( normh ` x ) x. ( normh ` x ) ) ) = ( ( normop ` T ) x. ( x .ih x ) ) )
54 47 53 eqtr4d
 |-  ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( ( normop ` T ) .h x ) .ih x ) = ( ( normop ` T ) x. ( ( normh ` x ) x. ( normh ` x ) ) ) )
55 44 54 eqtr4d
 |-  ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( ( normop ` T ) x. ( normh ` x ) ) x. ( normh ` x ) ) = ( ( ( normop ` T ) .h x ) .ih x ) )
56 hoif
 |-  Iop : ~H -1-1-onto-> ~H
57 f1of
 |-  ( Iop : ~H -1-1-onto-> ~H -> Iop : ~H --> ~H )
58 56 57 mp1i
 |-  ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> Iop : ~H --> ~H )
59 homval
 |-  ( ( ( normop ` T ) e. CC /\ Iop : ~H --> ~H /\ x e. ~H ) -> ( ( ( normop ` T ) .op Iop ) ` x ) = ( ( normop ` T ) .h ( Iop ` x ) ) )
60 42 58 45 59 syl3anc
 |-  ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( ( normop ` T ) .op Iop ) ` x ) = ( ( normop ` T ) .h ( Iop ` x ) ) )
61 hoival
 |-  ( x e. ~H -> ( Iop ` x ) = x )
62 61 oveq2d
 |-  ( x e. ~H -> ( ( normop ` T ) .h ( Iop ` x ) ) = ( ( normop ` T ) .h x ) )
63 62 adantl
 |-  ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( normop ` T ) .h ( Iop ` x ) ) = ( ( normop ` T ) .h x ) )
64 60 63 eqtrd
 |-  ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( ( normop ` T ) .op Iop ) ` x ) = ( ( normop ` T ) .h x ) )
65 64 oveq1d
 |-  ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( ( ( normop ` T ) .op Iop ) ` x ) .ih x ) = ( ( ( normop ` T ) .h x ) .ih x ) )
66 55 65 eqtr4d
 |-  ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( ( normop ` T ) x. ( normh ` x ) ) x. ( normh ` x ) ) = ( ( ( ( normop ` T ) .op Iop ) ` x ) .ih x ) )
67 40 66 breqtrd
 |-  ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( normh ` ( T ` x ) ) x. ( normh ` x ) ) <_ ( ( ( ( normop ` T ) .op Iop ) ` x ) .ih x ) )
68 5 22 11 26 67 letrd
 |-  ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( abs ` ( ( T ` x ) .ih x ) ) <_ ( ( ( ( normop ` T ) .op Iop ) ` x ) .ih x ) )
69 2 5 11 13 68 letrd
 |-  ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( T ` x ) .ih x ) <_ ( ( ( ( normop ` T ) .op Iop ) ` x ) .ih x ) )
70 69 ralrimiva
 |-  ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) -> A. x e. ~H ( ( T ` x ) .ih x ) <_ ( ( ( ( normop ` T ) .op Iop ) ` x ) .ih x ) )
71 leop2
 |-  ( ( T e. HrmOp /\ ( ( normop ` T ) .op Iop ) e. HrmOp ) -> ( T <_op ( ( normop ` T ) .op Iop ) <-> A. x e. ~H ( ( T ` x ) .ih x ) <_ ( ( ( ( normop ` T ) .op Iop ) ` x ) .ih x ) ) )
72 8 71 sylan2
 |-  ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) -> ( T <_op ( ( normop ` T ) .op Iop ) <-> A. x e. ~H ( ( T ` x ) .ih x ) <_ ( ( ( ( normop ` T ) .op Iop ) ` x ) .ih x ) ) )
73 70 72 mpbird
 |-  ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) -> T <_op ( ( normop ` T ) .op Iop ) )