Step |
Hyp |
Ref |
Expression |
1 |
|
hmopre |
|- ( ( T e. HrmOp /\ x e. ~H ) -> ( ( T ` x ) .ih x ) e. RR ) |
2 |
1
|
adantlr |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( T ` x ) .ih x ) e. RR ) |
3 |
1
|
recnd |
|- ( ( T e. HrmOp /\ x e. ~H ) -> ( ( T ` x ) .ih x ) e. CC ) |
4 |
3
|
abscld |
|- ( ( T e. HrmOp /\ x e. ~H ) -> ( abs ` ( ( T ` x ) .ih x ) ) e. RR ) |
5 |
4
|
adantlr |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( abs ` ( ( T ` x ) .ih x ) ) e. RR ) |
6 |
|
idhmop |
|- Iop e. HrmOp |
7 |
|
hmopm |
|- ( ( ( normop ` T ) e. RR /\ Iop e. HrmOp ) -> ( ( normop ` T ) .op Iop ) e. HrmOp ) |
8 |
6 7
|
mpan2 |
|- ( ( normop ` T ) e. RR -> ( ( normop ` T ) .op Iop ) e. HrmOp ) |
9 |
|
hmopre |
|- ( ( ( ( normop ` T ) .op Iop ) e. HrmOp /\ x e. ~H ) -> ( ( ( ( normop ` T ) .op Iop ) ` x ) .ih x ) e. RR ) |
10 |
8 9
|
sylan |
|- ( ( ( normop ` T ) e. RR /\ x e. ~H ) -> ( ( ( ( normop ` T ) .op Iop ) ` x ) .ih x ) e. RR ) |
11 |
10
|
adantll |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( ( ( normop ` T ) .op Iop ) ` x ) .ih x ) e. RR ) |
12 |
1
|
leabsd |
|- ( ( T e. HrmOp /\ x e. ~H ) -> ( ( T ` x ) .ih x ) <_ ( abs ` ( ( T ` x ) .ih x ) ) ) |
13 |
12
|
adantlr |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( T ` x ) .ih x ) <_ ( abs ` ( ( T ` x ) .ih x ) ) ) |
14 |
|
hmopf |
|- ( T e. HrmOp -> T : ~H --> ~H ) |
15 |
|
ffvelrn |
|- ( ( T : ~H --> ~H /\ x e. ~H ) -> ( T ` x ) e. ~H ) |
16 |
|
normcl |
|- ( ( T ` x ) e. ~H -> ( normh ` ( T ` x ) ) e. RR ) |
17 |
15 16
|
syl |
|- ( ( T : ~H --> ~H /\ x e. ~H ) -> ( normh ` ( T ` x ) ) e. RR ) |
18 |
14 17
|
sylan |
|- ( ( T e. HrmOp /\ x e. ~H ) -> ( normh ` ( T ` x ) ) e. RR ) |
19 |
18
|
adantlr |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( normh ` ( T ` x ) ) e. RR ) |
20 |
|
normcl |
|- ( x e. ~H -> ( normh ` x ) e. RR ) |
21 |
20
|
adantl |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( normh ` x ) e. RR ) |
22 |
19 21
|
remulcld |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( normh ` ( T ` x ) ) x. ( normh ` x ) ) e. RR ) |
23 |
14 15
|
sylan |
|- ( ( T e. HrmOp /\ x e. ~H ) -> ( T ` x ) e. ~H ) |
24 |
|
bcs |
|- ( ( ( T ` x ) e. ~H /\ x e. ~H ) -> ( abs ` ( ( T ` x ) .ih x ) ) <_ ( ( normh ` ( T ` x ) ) x. ( normh ` x ) ) ) |
25 |
23 24
|
sylancom |
|- ( ( T e. HrmOp /\ x e. ~H ) -> ( abs ` ( ( T ` x ) .ih x ) ) <_ ( ( normh ` ( T ` x ) ) x. ( normh ` x ) ) ) |
26 |
25
|
adantlr |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( abs ` ( ( T ` x ) .ih x ) ) <_ ( ( normh ` ( T ` x ) ) x. ( normh ` x ) ) ) |
27 |
|
remulcl |
|- ( ( ( normop ` T ) e. RR /\ ( normh ` x ) e. RR ) -> ( ( normop ` T ) x. ( normh ` x ) ) e. RR ) |
28 |
20 27
|
sylan2 |
|- ( ( ( normop ` T ) e. RR /\ x e. ~H ) -> ( ( normop ` T ) x. ( normh ` x ) ) e. RR ) |
29 |
28
|
adantll |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( normop ` T ) x. ( normh ` x ) ) e. RR ) |
30 |
|
normge0 |
|- ( x e. ~H -> 0 <_ ( normh ` x ) ) |
31 |
20 30
|
jca |
|- ( x e. ~H -> ( ( normh ` x ) e. RR /\ 0 <_ ( normh ` x ) ) ) |
32 |
31
|
adantl |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( normh ` x ) e. RR /\ 0 <_ ( normh ` x ) ) ) |
33 |
|
hmoplin |
|- ( T e. HrmOp -> T e. LinOp ) |
34 |
|
elbdop2 |
|- ( T e. BndLinOp <-> ( T e. LinOp /\ ( normop ` T ) e. RR ) ) |
35 |
34
|
biimpri |
|- ( ( T e. LinOp /\ ( normop ` T ) e. RR ) -> T e. BndLinOp ) |
36 |
33 35
|
sylan |
|- ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) -> T e. BndLinOp ) |
37 |
|
nmbdoplb |
|- ( ( T e. BndLinOp /\ x e. ~H ) -> ( normh ` ( T ` x ) ) <_ ( ( normop ` T ) x. ( normh ` x ) ) ) |
38 |
36 37
|
sylan |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( normh ` ( T ` x ) ) <_ ( ( normop ` T ) x. ( normh ` x ) ) ) |
39 |
|
lemul1a |
|- ( ( ( ( normh ` ( T ` x ) ) e. RR /\ ( ( normop ` T ) x. ( normh ` x ) ) e. RR /\ ( ( normh ` x ) e. RR /\ 0 <_ ( normh ` x ) ) ) /\ ( normh ` ( T ` x ) ) <_ ( ( normop ` T ) x. ( normh ` x ) ) ) -> ( ( normh ` ( T ` x ) ) x. ( normh ` x ) ) <_ ( ( ( normop ` T ) x. ( normh ` x ) ) x. ( normh ` x ) ) ) |
40 |
19 29 32 38 39
|
syl31anc |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( normh ` ( T ` x ) ) x. ( normh ` x ) ) <_ ( ( ( normop ` T ) x. ( normh ` x ) ) x. ( normh ` x ) ) ) |
41 |
|
recn |
|- ( ( normop ` T ) e. RR -> ( normop ` T ) e. CC ) |
42 |
41
|
ad2antlr |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( normop ` T ) e. CC ) |
43 |
21
|
recnd |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( normh ` x ) e. CC ) |
44 |
42 43 43
|
mulassd |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( ( normop ` T ) x. ( normh ` x ) ) x. ( normh ` x ) ) = ( ( normop ` T ) x. ( ( normh ` x ) x. ( normh ` x ) ) ) ) |
45 |
|
simpr |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> x e. ~H ) |
46 |
|
ax-his3 |
|- ( ( ( normop ` T ) e. CC /\ x e. ~H /\ x e. ~H ) -> ( ( ( normop ` T ) .h x ) .ih x ) = ( ( normop ` T ) x. ( x .ih x ) ) ) |
47 |
42 45 45 46
|
syl3anc |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( ( normop ` T ) .h x ) .ih x ) = ( ( normop ` T ) x. ( x .ih x ) ) ) |
48 |
20
|
recnd |
|- ( x e. ~H -> ( normh ` x ) e. CC ) |
49 |
48
|
sqvald |
|- ( x e. ~H -> ( ( normh ` x ) ^ 2 ) = ( ( normh ` x ) x. ( normh ` x ) ) ) |
50 |
|
normsq |
|- ( x e. ~H -> ( ( normh ` x ) ^ 2 ) = ( x .ih x ) ) |
51 |
49 50
|
eqtr3d |
|- ( x e. ~H -> ( ( normh ` x ) x. ( normh ` x ) ) = ( x .ih x ) ) |
52 |
51
|
oveq2d |
|- ( x e. ~H -> ( ( normop ` T ) x. ( ( normh ` x ) x. ( normh ` x ) ) ) = ( ( normop ` T ) x. ( x .ih x ) ) ) |
53 |
52
|
adantl |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( normop ` T ) x. ( ( normh ` x ) x. ( normh ` x ) ) ) = ( ( normop ` T ) x. ( x .ih x ) ) ) |
54 |
47 53
|
eqtr4d |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( ( normop ` T ) .h x ) .ih x ) = ( ( normop ` T ) x. ( ( normh ` x ) x. ( normh ` x ) ) ) ) |
55 |
44 54
|
eqtr4d |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( ( normop ` T ) x. ( normh ` x ) ) x. ( normh ` x ) ) = ( ( ( normop ` T ) .h x ) .ih x ) ) |
56 |
|
hoif |
|- Iop : ~H -1-1-onto-> ~H |
57 |
|
f1of |
|- ( Iop : ~H -1-1-onto-> ~H -> Iop : ~H --> ~H ) |
58 |
56 57
|
mp1i |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> Iop : ~H --> ~H ) |
59 |
|
homval |
|- ( ( ( normop ` T ) e. CC /\ Iop : ~H --> ~H /\ x e. ~H ) -> ( ( ( normop ` T ) .op Iop ) ` x ) = ( ( normop ` T ) .h ( Iop ` x ) ) ) |
60 |
42 58 45 59
|
syl3anc |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( ( normop ` T ) .op Iop ) ` x ) = ( ( normop ` T ) .h ( Iop ` x ) ) ) |
61 |
|
hoival |
|- ( x e. ~H -> ( Iop ` x ) = x ) |
62 |
61
|
oveq2d |
|- ( x e. ~H -> ( ( normop ` T ) .h ( Iop ` x ) ) = ( ( normop ` T ) .h x ) ) |
63 |
62
|
adantl |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( normop ` T ) .h ( Iop ` x ) ) = ( ( normop ` T ) .h x ) ) |
64 |
60 63
|
eqtrd |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( ( normop ` T ) .op Iop ) ` x ) = ( ( normop ` T ) .h x ) ) |
65 |
64
|
oveq1d |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( ( ( normop ` T ) .op Iop ) ` x ) .ih x ) = ( ( ( normop ` T ) .h x ) .ih x ) ) |
66 |
55 65
|
eqtr4d |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( ( normop ` T ) x. ( normh ` x ) ) x. ( normh ` x ) ) = ( ( ( ( normop ` T ) .op Iop ) ` x ) .ih x ) ) |
67 |
40 66
|
breqtrd |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( normh ` ( T ` x ) ) x. ( normh ` x ) ) <_ ( ( ( ( normop ` T ) .op Iop ) ` x ) .ih x ) ) |
68 |
5 22 11 26 67
|
letrd |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( abs ` ( ( T ` x ) .ih x ) ) <_ ( ( ( ( normop ` T ) .op Iop ) ` x ) .ih x ) ) |
69 |
2 5 11 13 68
|
letrd |
|- ( ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) /\ x e. ~H ) -> ( ( T ` x ) .ih x ) <_ ( ( ( ( normop ` T ) .op Iop ) ` x ) .ih x ) ) |
70 |
69
|
ralrimiva |
|- ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) -> A. x e. ~H ( ( T ` x ) .ih x ) <_ ( ( ( ( normop ` T ) .op Iop ) ` x ) .ih x ) ) |
71 |
|
leop2 |
|- ( ( T e. HrmOp /\ ( ( normop ` T ) .op Iop ) e. HrmOp ) -> ( T <_op ( ( normop ` T ) .op Iop ) <-> A. x e. ~H ( ( T ` x ) .ih x ) <_ ( ( ( ( normop ` T ) .op Iop ) ` x ) .ih x ) ) ) |
72 |
8 71
|
sylan2 |
|- ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) -> ( T <_op ( ( normop ` T ) .op Iop ) <-> A. x e. ~H ( ( T ` x ) .ih x ) <_ ( ( ( ( normop ` T ) .op Iop ) ` x ) .ih x ) ) ) |
73 |
70 72
|
mpbird |
|- ( ( T e. HrmOp /\ ( normop ` T ) e. RR ) -> T <_op ( ( normop ` T ) .op Iop ) ) |