Metamath Proof Explorer


Theorem nobdaymin

Description: Any non-empty class of surreals has a birthday-minimal element. (Contributed by Scott Fenton, 11-Dec-2025)

Ref Expression
Assertion nobdaymin ( ( 𝐴 No 𝐴 ≠ ∅ ) → ∃ 𝑥𝐴 ( bday 𝑥 ) = ( bday 𝐴 ) )

Proof

Step Hyp Ref Expression
1 imassrn ( bday 𝐴 ) ⊆ ran bday
2 bdayrn ran bday = On
3 1 2 sseqtri ( bday 𝐴 ) ⊆ On
4 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥𝐴 )
5 bdaydm dom bday = No
6 5 sseq2i ( 𝐴 ⊆ dom bday 𝐴 No )
7 bdayfun Fun bday
8 funfvima2 ( ( Fun bday 𝐴 ⊆ dom bday ) → ( 𝑥𝐴 → ( bday 𝑥 ) ∈ ( bday 𝐴 ) ) )
9 7 8 mpan ( 𝐴 ⊆ dom bday → ( 𝑥𝐴 → ( bday 𝑥 ) ∈ ( bday 𝐴 ) ) )
10 6 9 sylbir ( 𝐴 No → ( 𝑥𝐴 → ( bday 𝑥 ) ∈ ( bday 𝐴 ) ) )
11 ne0i ( ( bday 𝑥 ) ∈ ( bday 𝐴 ) → ( bday 𝐴 ) ≠ ∅ )
12 10 11 syl6 ( 𝐴 No → ( 𝑥𝐴 → ( bday 𝐴 ) ≠ ∅ ) )
13 12 exlimdv ( 𝐴 No → ( ∃ 𝑥 𝑥𝐴 → ( bday 𝐴 ) ≠ ∅ ) )
14 4 13 biimtrid ( 𝐴 No → ( 𝐴 ≠ ∅ → ( bday 𝐴 ) ≠ ∅ ) )
15 14 imp ( ( 𝐴 No 𝐴 ≠ ∅ ) → ( bday 𝐴 ) ≠ ∅ )
16 onint ( ( ( bday 𝐴 ) ⊆ On ∧ ( bday 𝐴 ) ≠ ∅ ) → ( bday 𝐴 ) ∈ ( bday 𝐴 ) )
17 3 15 16 sylancr ( ( 𝐴 No 𝐴 ≠ ∅ ) → ( bday 𝐴 ) ∈ ( bday 𝐴 ) )
18 bdayfn bday Fn No
19 fvelimab ( ( bday Fn No 𝐴 No ) → ( ( bday 𝐴 ) ∈ ( bday 𝐴 ) ↔ ∃ 𝑥𝐴 ( bday 𝑥 ) = ( bday 𝐴 ) ) )
20 18 19 mpan ( 𝐴 No → ( ( bday 𝐴 ) ∈ ( bday 𝐴 ) ↔ ∃ 𝑥𝐴 ( bday 𝑥 ) = ( bday 𝐴 ) ) )
21 20 adantr ( ( 𝐴 No 𝐴 ≠ ∅ ) → ( ( bday 𝐴 ) ∈ ( bday 𝐴 ) ↔ ∃ 𝑥𝐴 ( bday 𝑥 ) = ( bday 𝐴 ) ) )
22 17 21 mpbid ( ( 𝐴 No 𝐴 ≠ ∅ ) → ∃ 𝑥𝐴 ( bday 𝑥 ) = ( bday 𝐴 ) )