Metamath Proof Explorer


Theorem onvf1odlem1

Description: Lemma for onvf1od . (Contributed by BTernaryTau, 2-Dec-2025)

Ref Expression
Assertion onvf1odlem1 ( 𝐴𝑉 → ∃ 𝑥 ∈ On ∃ 𝑦 ∈ ( 𝑅1𝑥 ) ¬ 𝑦𝐴 )

Proof

Step Hyp Ref Expression
1 nvel ¬ V ∈ 𝑉
2 eleq1 ( V = 𝐴 → ( V ∈ 𝑉𝐴𝑉 ) )
3 2 eqcoms ( 𝐴 = V → ( V ∈ 𝑉𝐴𝑉 ) )
4 1 3 mtbii ( 𝐴 = V → ¬ 𝐴𝑉 )
5 4 con2i ( 𝐴𝑉 → ¬ 𝐴 = V )
6 eqv ( 𝐴 = V ↔ ∀ 𝑦 𝑦𝐴 )
7 alex ( ∀ 𝑦 𝑦𝐴 ↔ ¬ ∃ 𝑦 ¬ 𝑦𝐴 )
8 6 7 bitri ( 𝐴 = V ↔ ¬ ∃ 𝑦 ¬ 𝑦𝐴 )
9 8 con2bii ( ∃ 𝑦 ¬ 𝑦𝐴 ↔ ¬ 𝐴 = V )
10 5 9 sylibr ( 𝐴𝑉 → ∃ 𝑦 ¬ 𝑦𝐴 )
11 ax-1 ( ¬ 𝑦𝐴 → ( 𝑥 ∈ On → ¬ 𝑦𝐴 ) )
12 11 ralrimiv ( ¬ 𝑦𝐴 → ∀ 𝑥 ∈ On ¬ 𝑦𝐴 )
13 12 eximi ( ∃ 𝑦 ¬ 𝑦𝐴 → ∃ 𝑦𝑥 ∈ On ¬ 𝑦𝐴 )
14 rexv ( ∃ 𝑦 ∈ V ∀ 𝑥 ∈ On ¬ 𝑦𝐴 ↔ ∃ 𝑦𝑥 ∈ On ¬ 𝑦𝐴 )
15 13 14 sylibr ( ∃ 𝑦 ¬ 𝑦𝐴 → ∃ 𝑦 ∈ V ∀ 𝑥 ∈ On ¬ 𝑦𝐴 )
16 tz9.13g ( 𝑦 ∈ V → ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1𝑥 ) )
17 16 rgen 𝑦 ∈ V ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1𝑥 )
18 r19.29r ( ( ∃ 𝑦 ∈ V ∀ 𝑥 ∈ On ¬ 𝑦𝐴 ∧ ∀ 𝑦 ∈ V ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1𝑥 ) ) → ∃ 𝑦 ∈ V ( ∀ 𝑥 ∈ On ¬ 𝑦𝐴 ∧ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1𝑥 ) ) )
19 r19.29 ( ( ∀ 𝑥 ∈ On ¬ 𝑦𝐴 ∧ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1𝑥 ) ) → ∃ 𝑥 ∈ On ( ¬ 𝑦𝐴𝑦 ∈ ( 𝑅1𝑥 ) ) )
20 19 reximi ( ∃ 𝑦 ∈ V ( ∀ 𝑥 ∈ On ¬ 𝑦𝐴 ∧ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1𝑥 ) ) → ∃ 𝑦 ∈ V ∃ 𝑥 ∈ On ( ¬ 𝑦𝐴𝑦 ∈ ( 𝑅1𝑥 ) ) )
21 18 20 syl ( ( ∃ 𝑦 ∈ V ∀ 𝑥 ∈ On ¬ 𝑦𝐴 ∧ ∀ 𝑦 ∈ V ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1𝑥 ) ) → ∃ 𝑦 ∈ V ∃ 𝑥 ∈ On ( ¬ 𝑦𝐴𝑦 ∈ ( 𝑅1𝑥 ) ) )
22 17 21 mpan2 ( ∃ 𝑦 ∈ V ∀ 𝑥 ∈ On ¬ 𝑦𝐴 → ∃ 𝑦 ∈ V ∃ 𝑥 ∈ On ( ¬ 𝑦𝐴𝑦 ∈ ( 𝑅1𝑥 ) ) )
23 10 15 22 3syl ( 𝐴𝑉 → ∃ 𝑦 ∈ V ∃ 𝑥 ∈ On ( ¬ 𝑦𝐴𝑦 ∈ ( 𝑅1𝑥 ) ) )
24 rexcom ( ∃ 𝑦 ∈ V ∃ 𝑥 ∈ On ( ¬ 𝑦𝐴𝑦 ∈ ( 𝑅1𝑥 ) ) ↔ ∃ 𝑥 ∈ On ∃ 𝑦 ∈ V ( ¬ 𝑦𝐴𝑦 ∈ ( 𝑅1𝑥 ) ) )
25 exancom ( ∃ 𝑦 ( ¬ 𝑦𝐴𝑦 ∈ ( 𝑅1𝑥 ) ) ↔ ∃ 𝑦 ( 𝑦 ∈ ( 𝑅1𝑥 ) ∧ ¬ 𝑦𝐴 ) )
26 rexv ( ∃ 𝑦 ∈ V ( ¬ 𝑦𝐴𝑦 ∈ ( 𝑅1𝑥 ) ) ↔ ∃ 𝑦 ( ¬ 𝑦𝐴𝑦 ∈ ( 𝑅1𝑥 ) ) )
27 df-rex ( ∃ 𝑦 ∈ ( 𝑅1𝑥 ) ¬ 𝑦𝐴 ↔ ∃ 𝑦 ( 𝑦 ∈ ( 𝑅1𝑥 ) ∧ ¬ 𝑦𝐴 ) )
28 25 26 27 3bitr4i ( ∃ 𝑦 ∈ V ( ¬ 𝑦𝐴𝑦 ∈ ( 𝑅1𝑥 ) ) ↔ ∃ 𝑦 ∈ ( 𝑅1𝑥 ) ¬ 𝑦𝐴 )
29 28 rexbii ( ∃ 𝑥 ∈ On ∃ 𝑦 ∈ V ( ¬ 𝑦𝐴𝑦 ∈ ( 𝑅1𝑥 ) ) ↔ ∃ 𝑥 ∈ On ∃ 𝑦 ∈ ( 𝑅1𝑥 ) ¬ 𝑦𝐴 )
30 24 29 bitri ( ∃ 𝑦 ∈ V ∃ 𝑥 ∈ On ( ¬ 𝑦𝐴𝑦 ∈ ( 𝑅1𝑥 ) ) ↔ ∃ 𝑥 ∈ On ∃ 𝑦 ∈ ( 𝑅1𝑥 ) ¬ 𝑦𝐴 )
31 23 30 sylib ( 𝐴𝑉 → ∃ 𝑥 ∈ On ∃ 𝑦 ∈ ( 𝑅1𝑥 ) ¬ 𝑦𝐴 )