| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nvel |
⊢ ¬ V ∈ 𝑉 |
| 2 |
|
eleq1 |
⊢ ( V = 𝐴 → ( V ∈ 𝑉 ↔ 𝐴 ∈ 𝑉 ) ) |
| 3 |
2
|
eqcoms |
⊢ ( 𝐴 = V → ( V ∈ 𝑉 ↔ 𝐴 ∈ 𝑉 ) ) |
| 4 |
1 3
|
mtbii |
⊢ ( 𝐴 = V → ¬ 𝐴 ∈ 𝑉 ) |
| 5 |
4
|
con2i |
⊢ ( 𝐴 ∈ 𝑉 → ¬ 𝐴 = V ) |
| 6 |
|
eqv |
⊢ ( 𝐴 = V ↔ ∀ 𝑦 𝑦 ∈ 𝐴 ) |
| 7 |
|
alex |
⊢ ( ∀ 𝑦 𝑦 ∈ 𝐴 ↔ ¬ ∃ 𝑦 ¬ 𝑦 ∈ 𝐴 ) |
| 8 |
6 7
|
bitri |
⊢ ( 𝐴 = V ↔ ¬ ∃ 𝑦 ¬ 𝑦 ∈ 𝐴 ) |
| 9 |
8
|
con2bii |
⊢ ( ∃ 𝑦 ¬ 𝑦 ∈ 𝐴 ↔ ¬ 𝐴 = V ) |
| 10 |
5 9
|
sylibr |
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑦 ¬ 𝑦 ∈ 𝐴 ) |
| 11 |
|
ax-1 |
⊢ ( ¬ 𝑦 ∈ 𝐴 → ( 𝑥 ∈ On → ¬ 𝑦 ∈ 𝐴 ) ) |
| 12 |
11
|
ralrimiv |
⊢ ( ¬ 𝑦 ∈ 𝐴 → ∀ 𝑥 ∈ On ¬ 𝑦 ∈ 𝐴 ) |
| 13 |
12
|
eximi |
⊢ ( ∃ 𝑦 ¬ 𝑦 ∈ 𝐴 → ∃ 𝑦 ∀ 𝑥 ∈ On ¬ 𝑦 ∈ 𝐴 ) |
| 14 |
|
rexv |
⊢ ( ∃ 𝑦 ∈ V ∀ 𝑥 ∈ On ¬ 𝑦 ∈ 𝐴 ↔ ∃ 𝑦 ∀ 𝑥 ∈ On ¬ 𝑦 ∈ 𝐴 ) |
| 15 |
13 14
|
sylibr |
⊢ ( ∃ 𝑦 ¬ 𝑦 ∈ 𝐴 → ∃ 𝑦 ∈ V ∀ 𝑥 ∈ On ¬ 𝑦 ∈ 𝐴 ) |
| 16 |
|
tz9.13g |
⊢ ( 𝑦 ∈ V → ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
| 17 |
16
|
rgen |
⊢ ∀ 𝑦 ∈ V ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) |
| 18 |
|
r19.29r |
⊢ ( ( ∃ 𝑦 ∈ V ∀ 𝑥 ∈ On ¬ 𝑦 ∈ 𝐴 ∧ ∀ 𝑦 ∈ V ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) → ∃ 𝑦 ∈ V ( ∀ 𝑥 ∈ On ¬ 𝑦 ∈ 𝐴 ∧ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 19 |
|
r19.29 |
⊢ ( ( ∀ 𝑥 ∈ On ¬ 𝑦 ∈ 𝐴 ∧ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) → ∃ 𝑥 ∈ On ( ¬ 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 20 |
19
|
reximi |
⊢ ( ∃ 𝑦 ∈ V ( ∀ 𝑥 ∈ On ¬ 𝑦 ∈ 𝐴 ∧ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) → ∃ 𝑦 ∈ V ∃ 𝑥 ∈ On ( ¬ 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 21 |
18 20
|
syl |
⊢ ( ( ∃ 𝑦 ∈ V ∀ 𝑥 ∈ On ¬ 𝑦 ∈ 𝐴 ∧ ∀ 𝑦 ∈ V ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) → ∃ 𝑦 ∈ V ∃ 𝑥 ∈ On ( ¬ 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 22 |
17 21
|
mpan2 |
⊢ ( ∃ 𝑦 ∈ V ∀ 𝑥 ∈ On ¬ 𝑦 ∈ 𝐴 → ∃ 𝑦 ∈ V ∃ 𝑥 ∈ On ( ¬ 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 23 |
10 15 22
|
3syl |
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑦 ∈ V ∃ 𝑥 ∈ On ( ¬ 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 24 |
|
rexcom |
⊢ ( ∃ 𝑦 ∈ V ∃ 𝑥 ∈ On ( ¬ 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) ↔ ∃ 𝑥 ∈ On ∃ 𝑦 ∈ V ( ¬ 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 25 |
|
exancom |
⊢ ( ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) ↔ ∃ 𝑦 ( 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ ¬ 𝑦 ∈ 𝐴 ) ) |
| 26 |
|
rexv |
⊢ ( ∃ 𝑦 ∈ V ( ¬ 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) ↔ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 27 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ¬ 𝑦 ∈ 𝐴 ↔ ∃ 𝑦 ( 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ ¬ 𝑦 ∈ 𝐴 ) ) |
| 28 |
25 26 27
|
3bitr4i |
⊢ ( ∃ 𝑦 ∈ V ( ¬ 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) ↔ ∃ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ¬ 𝑦 ∈ 𝐴 ) |
| 29 |
28
|
rexbii |
⊢ ( ∃ 𝑥 ∈ On ∃ 𝑦 ∈ V ( ¬ 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) ↔ ∃ 𝑥 ∈ On ∃ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ¬ 𝑦 ∈ 𝐴 ) |
| 30 |
24 29
|
bitri |
⊢ ( ∃ 𝑦 ∈ V ∃ 𝑥 ∈ On ( ¬ 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) ↔ ∃ 𝑥 ∈ On ∃ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ¬ 𝑦 ∈ 𝐴 ) |
| 31 |
23 30
|
sylib |
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 ∈ On ∃ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ¬ 𝑦 ∈ 𝐴 ) |