Metamath Proof Explorer


Theorem onvf1od

Description: If G is a global choice function, then F is a bijection from the ordinals to the universe. This is the ZFC version of (1 -> 2) in https://tinyurl.com/hamkins-gblac . (Contributed by BTernaryTau, 5-Dec-2025)

Ref Expression
Hypotheses onvf1od.1 ( 𝜑 → ∀ 𝑧 ( 𝑧 ≠ ∅ → ( 𝐺𝑧 ) ∈ 𝑧 ) )
onvf1od.2 𝑀 = { 𝑥 ∈ On ∣ ∃ 𝑦 ∈ ( 𝑅1𝑥 ) ¬ 𝑦 ∈ ran 𝑤 }
onvf1od.3 𝑁 = ( 𝐺 ‘ ( ( 𝑅1𝑀 ) ∖ ran 𝑤 ) )
onvf1od.4 𝐹 = recs ( ( 𝑤 ∈ V ↦ 𝑁 ) )
Assertion onvf1od ( 𝜑𝐹 : On –1-1-onto→ V )

Proof

Step Hyp Ref Expression
1 onvf1od.1 ( 𝜑 → ∀ 𝑧 ( 𝑧 ≠ ∅ → ( 𝐺𝑧 ) ∈ 𝑧 ) )
2 onvf1od.2 𝑀 = { 𝑥 ∈ On ∣ ∃ 𝑦 ∈ ( 𝑅1𝑥 ) ¬ 𝑦 ∈ ran 𝑤 }
3 onvf1od.3 𝑁 = ( 𝐺 ‘ ( ( 𝑅1𝑀 ) ∖ ran 𝑤 ) )
4 onvf1od.4 𝐹 = recs ( ( 𝑤 ∈ V ↦ 𝑁 ) )
5 4 tfr1 𝐹 Fn On
6 dffn2 ( 𝐹 Fn On ↔ 𝐹 : On ⟶ V )
7 5 6 mpbi 𝐹 : On ⟶ V
8 eqid { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1𝑢 ) ¬ 𝑣 ∈ ( 𝐹𝑡 ) } = { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1𝑢 ) ¬ 𝑣 ∈ ( 𝐹𝑡 ) }
9 eqid ( 𝐺 ‘ ( ( 𝑅1 { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1𝑢 ) ¬ 𝑣 ∈ ( 𝐹𝑡 ) } ) ∖ ( 𝐹𝑡 ) ) ) = ( 𝐺 ‘ ( ( 𝑅1 { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1𝑢 ) ¬ 𝑣 ∈ ( 𝐹𝑡 ) } ) ∖ ( 𝐹𝑡 ) ) )
10 2 3 4 8 9 onvf1odlem3 ( 𝑡 ∈ On → ( 𝐹𝑡 ) = ( 𝐺 ‘ ( ( 𝑅1 { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1𝑢 ) ¬ 𝑣 ∈ ( 𝐹𝑡 ) } ) ∖ ( 𝐹𝑡 ) ) ) )
11 10 adantl ( ( 𝜑𝑡 ∈ On ) → ( 𝐹𝑡 ) = ( 𝐺 ‘ ( ( 𝑅1 { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1𝑢 ) ¬ 𝑣 ∈ ( 𝐹𝑡 ) } ) ∖ ( 𝐹𝑡 ) ) ) )
12 fnfun ( 𝐹 Fn On → Fun 𝐹 )
13 vex 𝑡 ∈ V
14 13 funimaex ( Fun 𝐹 → ( 𝐹𝑡 ) ∈ V )
15 5 12 14 mp2b ( 𝐹𝑡 ) ∈ V
16 1 8 9 onvf1odlem2 ( 𝜑 → ( ( 𝐹𝑡 ) ∈ V → ( 𝐺 ‘ ( ( 𝑅1 { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1𝑢 ) ¬ 𝑣 ∈ ( 𝐹𝑡 ) } ) ∖ ( 𝐹𝑡 ) ) ) ∈ ( ( 𝑅1 { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1𝑢 ) ¬ 𝑣 ∈ ( 𝐹𝑡 ) } ) ∖ ( 𝐹𝑡 ) ) ) )
17 15 16 mpi ( 𝜑 → ( 𝐺 ‘ ( ( 𝑅1 { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1𝑢 ) ¬ 𝑣 ∈ ( 𝐹𝑡 ) } ) ∖ ( 𝐹𝑡 ) ) ) ∈ ( ( 𝑅1 { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1𝑢 ) ¬ 𝑣 ∈ ( 𝐹𝑡 ) } ) ∖ ( 𝐹𝑡 ) ) )
18 17 eldifbd ( 𝜑 → ¬ ( 𝐺 ‘ ( ( 𝑅1 { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1𝑢 ) ¬ 𝑣 ∈ ( 𝐹𝑡 ) } ) ∖ ( 𝐹𝑡 ) ) ) ∈ ( 𝐹𝑡 ) )
19 18 adantr ( ( 𝜑𝑡 ∈ On ) → ¬ ( 𝐺 ‘ ( ( 𝑅1 { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1𝑢 ) ¬ 𝑣 ∈ ( 𝐹𝑡 ) } ) ∖ ( 𝐹𝑡 ) ) ) ∈ ( 𝐹𝑡 ) )
20 11 19 eqneltrd ( ( 𝜑𝑡 ∈ On ) → ¬ ( 𝐹𝑡 ) ∈ ( 𝐹𝑡 ) )
21 20 ralrimiva ( 𝜑 → ∀ 𝑡 ∈ On ¬ ( 𝐹𝑡 ) ∈ ( 𝐹𝑡 ) )
22 fvex ( 𝐹𝑡 ) ∈ V
23 eldif ( ( 𝐹𝑡 ) ∈ ( V ∖ ( 𝐹𝑡 ) ) ↔ ( ( 𝐹𝑡 ) ∈ V ∧ ¬ ( 𝐹𝑡 ) ∈ ( 𝐹𝑡 ) ) )
24 22 23 mpbiran ( ( 𝐹𝑡 ) ∈ ( V ∖ ( 𝐹𝑡 ) ) ↔ ¬ ( 𝐹𝑡 ) ∈ ( 𝐹𝑡 ) )
25 24 ralbii ( ∀ 𝑡 ∈ On ( 𝐹𝑡 ) ∈ ( V ∖ ( 𝐹𝑡 ) ) ↔ ∀ 𝑡 ∈ On ¬ ( 𝐹𝑡 ) ∈ ( 𝐹𝑡 ) )
26 5 tz7.48-2 ( ∀ 𝑡 ∈ On ( 𝐹𝑡 ) ∈ ( V ∖ ( 𝐹𝑡 ) ) → Fun 𝐹 )
27 25 26 sylbir ( ∀ 𝑡 ∈ On ¬ ( 𝐹𝑡 ) ∈ ( 𝐹𝑡 ) → Fun 𝐹 )
28 21 27 syl ( 𝜑 → Fun 𝐹 )
29 df-f1 ( 𝐹 : On –1-1→ V ↔ ( 𝐹 : On ⟶ V ∧ Fun 𝐹 ) )
30 29 biimpri ( ( 𝐹 : On ⟶ V ∧ Fun 𝐹 ) → 𝐹 : On –1-1→ V )
31 7 28 30 sylancr ( 𝜑𝐹 : On –1-1→ V )
32 onprc ¬ On ∈ V
33 f1f1orn ( 𝐹 : On –1-1→ V → 𝐹 : On –1-1-onto→ ran 𝐹 )
34 f1of1 ( 𝐹 : On –1-1-onto→ ran 𝐹𝐹 : On –1-1→ ran 𝐹 )
35 31 33 34 3syl ( 𝜑𝐹 : On –1-1→ ran 𝐹 )
36 f1dmex ( ( 𝐹 : On –1-1→ ran 𝐹 ∧ ran 𝐹 ∈ V ) → On ∈ V )
37 35 36 sylan ( ( 𝜑 ∧ ran 𝐹 ∈ V ) → On ∈ V )
38 37 stoic1a ( ( 𝜑 ∧ ¬ On ∈ V ) → ¬ ran 𝐹 ∈ V )
39 32 38 mpan2 ( 𝜑 → ¬ ran 𝐹 ∈ V )
40 1 2 3 4 8 9 onvf1odlem4 ( 𝜑 → ( ¬ ran 𝐹 ∈ V → ran 𝐹 = V ) )
41 39 40 mpd ( 𝜑 → ran 𝐹 = V )
42 dff1o5 ( 𝐹 : On –1-1-onto→ V ↔ ( 𝐹 : On –1-1→ V ∧ ran 𝐹 = V ) )
43 31 41 42 sylanbrc ( 𝜑𝐹 : On –1-1-onto→ V )