| Step |
Hyp |
Ref |
Expression |
| 1 |
|
onvf1od.1 |
⊢ ( 𝜑 → ∀ 𝑧 ( 𝑧 ≠ ∅ → ( 𝐺 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 2 |
|
onvf1od.2 |
⊢ 𝑀 = ∩ { 𝑥 ∈ On ∣ ∃ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ¬ 𝑦 ∈ ran 𝑤 } |
| 3 |
|
onvf1od.3 |
⊢ 𝑁 = ( 𝐺 ‘ ( ( 𝑅1 ‘ 𝑀 ) ∖ ran 𝑤 ) ) |
| 4 |
|
onvf1od.4 |
⊢ 𝐹 = recs ( ( 𝑤 ∈ V ↦ 𝑁 ) ) |
| 5 |
4
|
tfr1 |
⊢ 𝐹 Fn On |
| 6 |
|
dffn2 |
⊢ ( 𝐹 Fn On ↔ 𝐹 : On ⟶ V ) |
| 7 |
5 6
|
mpbi |
⊢ 𝐹 : On ⟶ V |
| 8 |
|
eqid |
⊢ ∩ { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1 ‘ 𝑢 ) ¬ 𝑣 ∈ ( 𝐹 “ 𝑡 ) } = ∩ { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1 ‘ 𝑢 ) ¬ 𝑣 ∈ ( 𝐹 “ 𝑡 ) } |
| 9 |
|
eqid |
⊢ ( 𝐺 ‘ ( ( 𝑅1 ‘ ∩ { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1 ‘ 𝑢 ) ¬ 𝑣 ∈ ( 𝐹 “ 𝑡 ) } ) ∖ ( 𝐹 “ 𝑡 ) ) ) = ( 𝐺 ‘ ( ( 𝑅1 ‘ ∩ { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1 ‘ 𝑢 ) ¬ 𝑣 ∈ ( 𝐹 “ 𝑡 ) } ) ∖ ( 𝐹 “ 𝑡 ) ) ) |
| 10 |
2 3 4 8 9
|
onvf1odlem3 |
⊢ ( 𝑡 ∈ On → ( 𝐹 ‘ 𝑡 ) = ( 𝐺 ‘ ( ( 𝑅1 ‘ ∩ { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1 ‘ 𝑢 ) ¬ 𝑣 ∈ ( 𝐹 “ 𝑡 ) } ) ∖ ( 𝐹 “ 𝑡 ) ) ) ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ On ) → ( 𝐹 ‘ 𝑡 ) = ( 𝐺 ‘ ( ( 𝑅1 ‘ ∩ { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1 ‘ 𝑢 ) ¬ 𝑣 ∈ ( 𝐹 “ 𝑡 ) } ) ∖ ( 𝐹 “ 𝑡 ) ) ) ) |
| 12 |
|
fnfun |
⊢ ( 𝐹 Fn On → Fun 𝐹 ) |
| 13 |
|
vex |
⊢ 𝑡 ∈ V |
| 14 |
13
|
funimaex |
⊢ ( Fun 𝐹 → ( 𝐹 “ 𝑡 ) ∈ V ) |
| 15 |
5 12 14
|
mp2b |
⊢ ( 𝐹 “ 𝑡 ) ∈ V |
| 16 |
1 8 9
|
onvf1odlem2 |
⊢ ( 𝜑 → ( ( 𝐹 “ 𝑡 ) ∈ V → ( 𝐺 ‘ ( ( 𝑅1 ‘ ∩ { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1 ‘ 𝑢 ) ¬ 𝑣 ∈ ( 𝐹 “ 𝑡 ) } ) ∖ ( 𝐹 “ 𝑡 ) ) ) ∈ ( ( 𝑅1 ‘ ∩ { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1 ‘ 𝑢 ) ¬ 𝑣 ∈ ( 𝐹 “ 𝑡 ) } ) ∖ ( 𝐹 “ 𝑡 ) ) ) ) |
| 17 |
15 16
|
mpi |
⊢ ( 𝜑 → ( 𝐺 ‘ ( ( 𝑅1 ‘ ∩ { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1 ‘ 𝑢 ) ¬ 𝑣 ∈ ( 𝐹 “ 𝑡 ) } ) ∖ ( 𝐹 “ 𝑡 ) ) ) ∈ ( ( 𝑅1 ‘ ∩ { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1 ‘ 𝑢 ) ¬ 𝑣 ∈ ( 𝐹 “ 𝑡 ) } ) ∖ ( 𝐹 “ 𝑡 ) ) ) |
| 18 |
17
|
eldifbd |
⊢ ( 𝜑 → ¬ ( 𝐺 ‘ ( ( 𝑅1 ‘ ∩ { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1 ‘ 𝑢 ) ¬ 𝑣 ∈ ( 𝐹 “ 𝑡 ) } ) ∖ ( 𝐹 “ 𝑡 ) ) ) ∈ ( 𝐹 “ 𝑡 ) ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ On ) → ¬ ( 𝐺 ‘ ( ( 𝑅1 ‘ ∩ { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1 ‘ 𝑢 ) ¬ 𝑣 ∈ ( 𝐹 “ 𝑡 ) } ) ∖ ( 𝐹 “ 𝑡 ) ) ) ∈ ( 𝐹 “ 𝑡 ) ) |
| 20 |
11 19
|
eqneltrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ On ) → ¬ ( 𝐹 ‘ 𝑡 ) ∈ ( 𝐹 “ 𝑡 ) ) |
| 21 |
20
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑡 ∈ On ¬ ( 𝐹 ‘ 𝑡 ) ∈ ( 𝐹 “ 𝑡 ) ) |
| 22 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑡 ) ∈ V |
| 23 |
|
eldif |
⊢ ( ( 𝐹 ‘ 𝑡 ) ∈ ( V ∖ ( 𝐹 “ 𝑡 ) ) ↔ ( ( 𝐹 ‘ 𝑡 ) ∈ V ∧ ¬ ( 𝐹 ‘ 𝑡 ) ∈ ( 𝐹 “ 𝑡 ) ) ) |
| 24 |
22 23
|
mpbiran |
⊢ ( ( 𝐹 ‘ 𝑡 ) ∈ ( V ∖ ( 𝐹 “ 𝑡 ) ) ↔ ¬ ( 𝐹 ‘ 𝑡 ) ∈ ( 𝐹 “ 𝑡 ) ) |
| 25 |
24
|
ralbii |
⊢ ( ∀ 𝑡 ∈ On ( 𝐹 ‘ 𝑡 ) ∈ ( V ∖ ( 𝐹 “ 𝑡 ) ) ↔ ∀ 𝑡 ∈ On ¬ ( 𝐹 ‘ 𝑡 ) ∈ ( 𝐹 “ 𝑡 ) ) |
| 26 |
5
|
tz7.48-2 |
⊢ ( ∀ 𝑡 ∈ On ( 𝐹 ‘ 𝑡 ) ∈ ( V ∖ ( 𝐹 “ 𝑡 ) ) → Fun ◡ 𝐹 ) |
| 27 |
25 26
|
sylbir |
⊢ ( ∀ 𝑡 ∈ On ¬ ( 𝐹 ‘ 𝑡 ) ∈ ( 𝐹 “ 𝑡 ) → Fun ◡ 𝐹 ) |
| 28 |
21 27
|
syl |
⊢ ( 𝜑 → Fun ◡ 𝐹 ) |
| 29 |
|
df-f1 |
⊢ ( 𝐹 : On –1-1→ V ↔ ( 𝐹 : On ⟶ V ∧ Fun ◡ 𝐹 ) ) |
| 30 |
29
|
biimpri |
⊢ ( ( 𝐹 : On ⟶ V ∧ Fun ◡ 𝐹 ) → 𝐹 : On –1-1→ V ) |
| 31 |
7 28 30
|
sylancr |
⊢ ( 𝜑 → 𝐹 : On –1-1→ V ) |
| 32 |
|
onprc |
⊢ ¬ On ∈ V |
| 33 |
|
f1f1orn |
⊢ ( 𝐹 : On –1-1→ V → 𝐹 : On –1-1-onto→ ran 𝐹 ) |
| 34 |
|
f1of1 |
⊢ ( 𝐹 : On –1-1-onto→ ran 𝐹 → 𝐹 : On –1-1→ ran 𝐹 ) |
| 35 |
31 33 34
|
3syl |
⊢ ( 𝜑 → 𝐹 : On –1-1→ ran 𝐹 ) |
| 36 |
|
f1dmex |
⊢ ( ( 𝐹 : On –1-1→ ran 𝐹 ∧ ran 𝐹 ∈ V ) → On ∈ V ) |
| 37 |
35 36
|
sylan |
⊢ ( ( 𝜑 ∧ ran 𝐹 ∈ V ) → On ∈ V ) |
| 38 |
37
|
stoic1a |
⊢ ( ( 𝜑 ∧ ¬ On ∈ V ) → ¬ ran 𝐹 ∈ V ) |
| 39 |
32 38
|
mpan2 |
⊢ ( 𝜑 → ¬ ran 𝐹 ∈ V ) |
| 40 |
1 2 3 4 8 9
|
onvf1odlem4 |
⊢ ( 𝜑 → ( ¬ ran 𝐹 ∈ V → ran 𝐹 = V ) ) |
| 41 |
39 40
|
mpd |
⊢ ( 𝜑 → ran 𝐹 = V ) |
| 42 |
|
dff1o5 |
⊢ ( 𝐹 : On –1-1-onto→ V ↔ ( 𝐹 : On –1-1→ V ∧ ran 𝐹 = V ) ) |
| 43 |
31 41 42
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : On –1-1-onto→ V ) |