| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vonf1owev.1 |
⊢ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑦 ) } |
| 2 |
|
f1of |
⊢ ( 𝐹 : V –1-1-onto→ On → 𝐹 : V ⟶ On ) |
| 3 |
2
|
fimassd |
⊢ ( 𝐹 : V –1-1-onto→ On → ( 𝐹 “ 𝑡 ) ⊆ On ) |
| 4 |
|
f1odm |
⊢ ( 𝐹 : V –1-1-onto→ On → dom 𝐹 = V ) |
| 5 |
4
|
ineq1d |
⊢ ( 𝐹 : V –1-1-onto→ On → ( dom 𝐹 ∩ 𝑡 ) = ( V ∩ 𝑡 ) ) |
| 6 |
5
|
neeq1d |
⊢ ( 𝐹 : V –1-1-onto→ On → ( ( dom 𝐹 ∩ 𝑡 ) ≠ ∅ ↔ ( V ∩ 𝑡 ) ≠ ∅ ) ) |
| 7 |
|
inv1 |
⊢ ( 𝑡 ∩ V ) = 𝑡 |
| 8 |
7
|
ineqcomi |
⊢ ( V ∩ 𝑡 ) = 𝑡 |
| 9 |
8
|
neeq1i |
⊢ ( ( V ∩ 𝑡 ) ≠ ∅ ↔ 𝑡 ≠ ∅ ) |
| 10 |
6 9
|
bitr2di |
⊢ ( 𝐹 : V –1-1-onto→ On → ( 𝑡 ≠ ∅ ↔ ( dom 𝐹 ∩ 𝑡 ) ≠ ∅ ) ) |
| 11 |
10
|
biimpa |
⊢ ( ( 𝐹 : V –1-1-onto→ On ∧ 𝑡 ≠ ∅ ) → ( dom 𝐹 ∩ 𝑡 ) ≠ ∅ ) |
| 12 |
11
|
imadisjlnd |
⊢ ( ( 𝐹 : V –1-1-onto→ On ∧ 𝑡 ≠ ∅ ) → ( 𝐹 “ 𝑡 ) ≠ ∅ ) |
| 13 |
|
onssmin |
⊢ ( ( ( 𝐹 “ 𝑡 ) ⊆ On ∧ ( 𝐹 “ 𝑡 ) ≠ ∅ ) → ∃ 𝑟 ∈ ( 𝐹 “ 𝑡 ) ∀ 𝑠 ∈ ( 𝐹 “ 𝑡 ) 𝑟 ⊆ 𝑠 ) |
| 14 |
3 12 13
|
syl2an2r |
⊢ ( ( 𝐹 : V –1-1-onto→ On ∧ 𝑡 ≠ ∅ ) → ∃ 𝑟 ∈ ( 𝐹 “ 𝑡 ) ∀ 𝑠 ∈ ( 𝐹 “ 𝑡 ) 𝑟 ⊆ 𝑠 ) |
| 15 |
14
|
ex |
⊢ ( 𝐹 : V –1-1-onto→ On → ( 𝑡 ≠ ∅ → ∃ 𝑟 ∈ ( 𝐹 “ 𝑡 ) ∀ 𝑠 ∈ ( 𝐹 “ 𝑡 ) 𝑟 ⊆ 𝑠 ) ) |
| 16 |
|
vex |
⊢ 𝑣 ∈ V |
| 17 |
|
vex |
⊢ 𝑢 ∈ V |
| 18 |
|
fveq2 |
⊢ ( 𝑥 = 𝑣 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑣 ) ) |
| 19 |
18
|
eleq1d |
⊢ ( 𝑥 = 𝑣 → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑣 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) |
| 20 |
|
fveq2 |
⊢ ( 𝑦 = 𝑢 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑢 ) ) |
| 21 |
20
|
eleq2d |
⊢ ( 𝑦 = 𝑢 → ( ( 𝐹 ‘ 𝑣 ) ∈ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑣 ) ∈ ( 𝐹 ‘ 𝑢 ) ) ) |
| 22 |
16 17 19 21 1
|
brab |
⊢ ( 𝑣 𝑅 𝑢 ↔ ( 𝐹 ‘ 𝑣 ) ∈ ( 𝐹 ‘ 𝑢 ) ) |
| 23 |
22
|
notbii |
⊢ ( ¬ 𝑣 𝑅 𝑢 ↔ ¬ ( 𝐹 ‘ 𝑣 ) ∈ ( 𝐹 ‘ 𝑢 ) ) |
| 24 |
2
|
ffvelcdmda |
⊢ ( ( 𝐹 : V –1-1-onto→ On ∧ 𝑢 ∈ V ) → ( 𝐹 ‘ 𝑢 ) ∈ On ) |
| 25 |
24
|
elvd |
⊢ ( 𝐹 : V –1-1-onto→ On → ( 𝐹 ‘ 𝑢 ) ∈ On ) |
| 26 |
2
|
ffvelcdmda |
⊢ ( ( 𝐹 : V –1-1-onto→ On ∧ 𝑣 ∈ V ) → ( 𝐹 ‘ 𝑣 ) ∈ On ) |
| 27 |
26
|
elvd |
⊢ ( 𝐹 : V –1-1-onto→ On → ( 𝐹 ‘ 𝑣 ) ∈ On ) |
| 28 |
|
ontri1 |
⊢ ( ( ( 𝐹 ‘ 𝑢 ) ∈ On ∧ ( 𝐹 ‘ 𝑣 ) ∈ On ) → ( ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ 𝑣 ) ↔ ¬ ( 𝐹 ‘ 𝑣 ) ∈ ( 𝐹 ‘ 𝑢 ) ) ) |
| 29 |
25 27 28
|
syl2anc |
⊢ ( 𝐹 : V –1-1-onto→ On → ( ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ 𝑣 ) ↔ ¬ ( 𝐹 ‘ 𝑣 ) ∈ ( 𝐹 ‘ 𝑢 ) ) ) |
| 30 |
23 29
|
bitr4id |
⊢ ( 𝐹 : V –1-1-onto→ On → ( ¬ 𝑣 𝑅 𝑢 ↔ ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ 𝑣 ) ) ) |
| 31 |
30
|
ralbidv |
⊢ ( 𝐹 : V –1-1-onto→ On → ( ∀ 𝑣 ∈ 𝑡 ¬ 𝑣 𝑅 𝑢 ↔ ∀ 𝑣 ∈ 𝑡 ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ 𝑣 ) ) ) |
| 32 |
|
f1ofn |
⊢ ( 𝐹 : V –1-1-onto→ On → 𝐹 Fn V ) |
| 33 |
|
ssv |
⊢ 𝑡 ⊆ V |
| 34 |
|
sseq2 |
⊢ ( 𝑠 = ( 𝐹 ‘ 𝑣 ) → ( ( 𝐹 ‘ 𝑢 ) ⊆ 𝑠 ↔ ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ 𝑣 ) ) ) |
| 35 |
34
|
ralima |
⊢ ( ( 𝐹 Fn V ∧ 𝑡 ⊆ V ) → ( ∀ 𝑠 ∈ ( 𝐹 “ 𝑡 ) ( 𝐹 ‘ 𝑢 ) ⊆ 𝑠 ↔ ∀ 𝑣 ∈ 𝑡 ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ 𝑣 ) ) ) |
| 36 |
32 33 35
|
sylancl |
⊢ ( 𝐹 : V –1-1-onto→ On → ( ∀ 𝑠 ∈ ( 𝐹 “ 𝑡 ) ( 𝐹 ‘ 𝑢 ) ⊆ 𝑠 ↔ ∀ 𝑣 ∈ 𝑡 ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ 𝑣 ) ) ) |
| 37 |
31 36
|
bitr4d |
⊢ ( 𝐹 : V –1-1-onto→ On → ( ∀ 𝑣 ∈ 𝑡 ¬ 𝑣 𝑅 𝑢 ↔ ∀ 𝑠 ∈ ( 𝐹 “ 𝑡 ) ( 𝐹 ‘ 𝑢 ) ⊆ 𝑠 ) ) |
| 38 |
37
|
rexbidv |
⊢ ( 𝐹 : V –1-1-onto→ On → ( ∃ 𝑢 ∈ 𝑡 ∀ 𝑣 ∈ 𝑡 ¬ 𝑣 𝑅 𝑢 ↔ ∃ 𝑢 ∈ 𝑡 ∀ 𝑠 ∈ ( 𝐹 “ 𝑡 ) ( 𝐹 ‘ 𝑢 ) ⊆ 𝑠 ) ) |
| 39 |
|
sseq1 |
⊢ ( 𝑟 = ( 𝐹 ‘ 𝑢 ) → ( 𝑟 ⊆ 𝑠 ↔ ( 𝐹 ‘ 𝑢 ) ⊆ 𝑠 ) ) |
| 40 |
39
|
ralbidv |
⊢ ( 𝑟 = ( 𝐹 ‘ 𝑢 ) → ( ∀ 𝑠 ∈ ( 𝐹 “ 𝑡 ) 𝑟 ⊆ 𝑠 ↔ ∀ 𝑠 ∈ ( 𝐹 “ 𝑡 ) ( 𝐹 ‘ 𝑢 ) ⊆ 𝑠 ) ) |
| 41 |
40
|
rexima |
⊢ ( ( 𝐹 Fn V ∧ 𝑡 ⊆ V ) → ( ∃ 𝑟 ∈ ( 𝐹 “ 𝑡 ) ∀ 𝑠 ∈ ( 𝐹 “ 𝑡 ) 𝑟 ⊆ 𝑠 ↔ ∃ 𝑢 ∈ 𝑡 ∀ 𝑠 ∈ ( 𝐹 “ 𝑡 ) ( 𝐹 ‘ 𝑢 ) ⊆ 𝑠 ) ) |
| 42 |
32 33 41
|
sylancl |
⊢ ( 𝐹 : V –1-1-onto→ On → ( ∃ 𝑟 ∈ ( 𝐹 “ 𝑡 ) ∀ 𝑠 ∈ ( 𝐹 “ 𝑡 ) 𝑟 ⊆ 𝑠 ↔ ∃ 𝑢 ∈ 𝑡 ∀ 𝑠 ∈ ( 𝐹 “ 𝑡 ) ( 𝐹 ‘ 𝑢 ) ⊆ 𝑠 ) ) |
| 43 |
38 42
|
bitr4d |
⊢ ( 𝐹 : V –1-1-onto→ On → ( ∃ 𝑢 ∈ 𝑡 ∀ 𝑣 ∈ 𝑡 ¬ 𝑣 𝑅 𝑢 ↔ ∃ 𝑟 ∈ ( 𝐹 “ 𝑡 ) ∀ 𝑠 ∈ ( 𝐹 “ 𝑡 ) 𝑟 ⊆ 𝑠 ) ) |
| 44 |
15 43
|
sylibrd |
⊢ ( 𝐹 : V –1-1-onto→ On → ( 𝑡 ≠ ∅ → ∃ 𝑢 ∈ 𝑡 ∀ 𝑣 ∈ 𝑡 ¬ 𝑣 𝑅 𝑢 ) ) |
| 45 |
44
|
alrimiv |
⊢ ( 𝐹 : V –1-1-onto→ On → ∀ 𝑡 ( 𝑡 ≠ ∅ → ∃ 𝑢 ∈ 𝑡 ∀ 𝑣 ∈ 𝑡 ¬ 𝑣 𝑅 𝑢 ) ) |
| 46 |
|
df-fr |
⊢ ( 𝑅 Fr V ↔ ∀ 𝑡 ( ( 𝑡 ⊆ V ∧ 𝑡 ≠ ∅ ) → ∃ 𝑢 ∈ 𝑡 ∀ 𝑣 ∈ 𝑡 ¬ 𝑣 𝑅 𝑢 ) ) |
| 47 |
33
|
biantrur |
⊢ ( 𝑡 ≠ ∅ ↔ ( 𝑡 ⊆ V ∧ 𝑡 ≠ ∅ ) ) |
| 48 |
47
|
imbi1i |
⊢ ( ( 𝑡 ≠ ∅ → ∃ 𝑢 ∈ 𝑡 ∀ 𝑣 ∈ 𝑡 ¬ 𝑣 𝑅 𝑢 ) ↔ ( ( 𝑡 ⊆ V ∧ 𝑡 ≠ ∅ ) → ∃ 𝑢 ∈ 𝑡 ∀ 𝑣 ∈ 𝑡 ¬ 𝑣 𝑅 𝑢 ) ) |
| 49 |
48
|
albii |
⊢ ( ∀ 𝑡 ( 𝑡 ≠ ∅ → ∃ 𝑢 ∈ 𝑡 ∀ 𝑣 ∈ 𝑡 ¬ 𝑣 𝑅 𝑢 ) ↔ ∀ 𝑡 ( ( 𝑡 ⊆ V ∧ 𝑡 ≠ ∅ ) → ∃ 𝑢 ∈ 𝑡 ∀ 𝑣 ∈ 𝑡 ¬ 𝑣 𝑅 𝑢 ) ) |
| 50 |
46 49
|
bitr4i |
⊢ ( 𝑅 Fr V ↔ ∀ 𝑡 ( 𝑡 ≠ ∅ → ∃ 𝑢 ∈ 𝑡 ∀ 𝑣 ∈ 𝑡 ¬ 𝑣 𝑅 𝑢 ) ) |
| 51 |
45 50
|
sylibr |
⊢ ( 𝐹 : V –1-1-onto→ On → 𝑅 Fr V ) |
| 52 |
2
|
ffvelcdmda |
⊢ ( ( 𝐹 : V –1-1-onto→ On ∧ 𝑤 ∈ V ) → ( 𝐹 ‘ 𝑤 ) ∈ On ) |
| 53 |
52
|
elvd |
⊢ ( 𝐹 : V –1-1-onto→ On → ( 𝐹 ‘ 𝑤 ) ∈ On ) |
| 54 |
2
|
ffvelcdmda |
⊢ ( ( 𝐹 : V –1-1-onto→ On ∧ 𝑧 ∈ V ) → ( 𝐹 ‘ 𝑧 ) ∈ On ) |
| 55 |
54
|
elvd |
⊢ ( 𝐹 : V –1-1-onto→ On → ( 𝐹 ‘ 𝑧 ) ∈ On ) |
| 56 |
|
oneltri |
⊢ ( ( ( 𝐹 ‘ 𝑤 ) ∈ On ∧ ( 𝐹 ‘ 𝑧 ) ∈ On ) → ( ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ 𝑧 ) ∨ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ∨ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ) ) |
| 57 |
53 55 56
|
syl2anc |
⊢ ( 𝐹 : V –1-1-onto→ On → ( ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ 𝑧 ) ∨ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ∨ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ) ) |
| 58 |
|
3orcomb |
⊢ ( ( ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ 𝑧 ) ∨ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ∨ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ) ↔ ( ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ 𝑧 ) ∨ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ∨ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ) ) |
| 59 |
57 58
|
sylib |
⊢ ( 𝐹 : V –1-1-onto→ On → ( ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ 𝑧 ) ∨ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ∨ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ) ) |
| 60 |
|
vex |
⊢ 𝑤 ∈ V |
| 61 |
|
vex |
⊢ 𝑧 ∈ V |
| 62 |
|
fveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 63 |
62
|
eleq1d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) |
| 64 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 65 |
64
|
eleq2d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ 𝑧 ) ) ) |
| 66 |
60 61 63 65 1
|
brab |
⊢ ( 𝑤 𝑅 𝑧 ↔ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ 𝑧 ) ) |
| 67 |
66
|
biimpri |
⊢ ( ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ 𝑧 ) → 𝑤 𝑅 𝑧 ) |
| 68 |
67
|
a1i |
⊢ ( 𝐹 : V –1-1-onto→ On → ( ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ 𝑧 ) → 𝑤 𝑅 𝑧 ) ) |
| 69 |
|
f1of1 |
⊢ ( 𝐹 : V –1-1-onto→ On → 𝐹 : V –1-1→ On ) |
| 70 |
|
f1veqaeq |
⊢ ( ( 𝐹 : V –1-1→ On ∧ ( 𝑤 ∈ V ∧ 𝑧 ∈ V ) ) → ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) → 𝑤 = 𝑧 ) ) |
| 71 |
60 61 70
|
mpanr12 |
⊢ ( 𝐹 : V –1-1→ On → ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) → 𝑤 = 𝑧 ) ) |
| 72 |
69 71
|
syl |
⊢ ( 𝐹 : V –1-1-onto→ On → ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) → 𝑤 = 𝑧 ) ) |
| 73 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 74 |
73
|
eleq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) |
| 75 |
|
fveq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 76 |
75
|
eleq2d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ) ) |
| 77 |
61 60 74 76 1
|
brab |
⊢ ( 𝑧 𝑅 𝑤 ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ) |
| 78 |
77
|
biimpri |
⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) → 𝑧 𝑅 𝑤 ) |
| 79 |
78
|
a1i |
⊢ ( 𝐹 : V –1-1-onto→ On → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) → 𝑧 𝑅 𝑤 ) ) |
| 80 |
68 72 79
|
3orim123d |
⊢ ( 𝐹 : V –1-1-onto→ On → ( ( ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ 𝑧 ) ∨ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ∨ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ) → ( 𝑤 𝑅 𝑧 ∨ 𝑤 = 𝑧 ∨ 𝑧 𝑅 𝑤 ) ) ) |
| 81 |
59 80
|
mpd |
⊢ ( 𝐹 : V –1-1-onto→ On → ( 𝑤 𝑅 𝑧 ∨ 𝑤 = 𝑧 ∨ 𝑧 𝑅 𝑤 ) ) |
| 82 |
81
|
ralrimivw |
⊢ ( 𝐹 : V –1-1-onto→ On → ∀ 𝑧 ∈ V ( 𝑤 𝑅 𝑧 ∨ 𝑤 = 𝑧 ∨ 𝑧 𝑅 𝑤 ) ) |
| 83 |
82
|
ralrimivw |
⊢ ( 𝐹 : V –1-1-onto→ On → ∀ 𝑤 ∈ V ∀ 𝑧 ∈ V ( 𝑤 𝑅 𝑧 ∨ 𝑤 = 𝑧 ∨ 𝑧 𝑅 𝑤 ) ) |
| 84 |
|
dfwe2 |
⊢ ( 𝑅 We V ↔ ( 𝑅 Fr V ∧ ∀ 𝑤 ∈ V ∀ 𝑧 ∈ V ( 𝑤 𝑅 𝑧 ∨ 𝑤 = 𝑧 ∨ 𝑧 𝑅 𝑤 ) ) ) |
| 85 |
51 83 84
|
sylanbrc |
⊢ ( 𝐹 : V –1-1-onto→ On → 𝑅 We V ) |