Metamath Proof Explorer


Theorem vonf1owev

Description: If F is a bijection from the universe to the ordinals, then R well-orders the universe. This is the ZFC version of (2 -> 3) in https://tinyurl.com/hamkins-gblac . (Contributed by BTernaryTau, 6-Dec-2025)

Ref Expression
Hypothesis vonf1owev.1 R = x y | F x F y
Assertion vonf1owev F : V 1-1 onto On R We V

Proof

Step Hyp Ref Expression
1 vonf1owev.1 R = x y | F x F y
2 f1of F : V 1-1 onto On F : V On
3 2 fimassd F : V 1-1 onto On F t On
4 f1odm F : V 1-1 onto On dom F = V
5 4 ineq1d F : V 1-1 onto On dom F t = V t
6 5 neeq1d F : V 1-1 onto On dom F t V t
7 inv1 t V = t
8 7 ineqcomi V t = t
9 8 neeq1i V t t
10 6 9 bitr2di F : V 1-1 onto On t dom F t
11 10 biimpa F : V 1-1 onto On t dom F t
12 11 imadisjlnd F : V 1-1 onto On t F t
13 onssmin F t On F t r F t s F t r s
14 3 12 13 syl2an2r F : V 1-1 onto On t r F t s F t r s
15 14 ex F : V 1-1 onto On t r F t s F t r s
16 vex v V
17 vex u V
18 fveq2 x = v F x = F v
19 18 eleq1d x = v F x F y F v F y
20 fveq2 y = u F y = F u
21 20 eleq2d y = u F v F y F v F u
22 16 17 19 21 1 brab v R u F v F u
23 22 notbii ¬ v R u ¬ F v F u
24 2 ffvelcdmda F : V 1-1 onto On u V F u On
25 24 elvd F : V 1-1 onto On F u On
26 2 ffvelcdmda F : V 1-1 onto On v V F v On
27 26 elvd F : V 1-1 onto On F v On
28 ontri1 F u On F v On F u F v ¬ F v F u
29 25 27 28 syl2anc F : V 1-1 onto On F u F v ¬ F v F u
30 23 29 bitr4id F : V 1-1 onto On ¬ v R u F u F v
31 30 ralbidv F : V 1-1 onto On v t ¬ v R u v t F u F v
32 f1ofn F : V 1-1 onto On F Fn V
33 ssv t V
34 sseq2 s = F v F u s F u F v
35 34 ralima F Fn V t V s F t F u s v t F u F v
36 32 33 35 sylancl F : V 1-1 onto On s F t F u s v t F u F v
37 31 36 bitr4d F : V 1-1 onto On v t ¬ v R u s F t F u s
38 37 rexbidv F : V 1-1 onto On u t v t ¬ v R u u t s F t F u s
39 sseq1 r = F u r s F u s
40 39 ralbidv r = F u s F t r s s F t F u s
41 40 rexima F Fn V t V r F t s F t r s u t s F t F u s
42 32 33 41 sylancl F : V 1-1 onto On r F t s F t r s u t s F t F u s
43 38 42 bitr4d F : V 1-1 onto On u t v t ¬ v R u r F t s F t r s
44 15 43 sylibrd F : V 1-1 onto On t u t v t ¬ v R u
45 44 alrimiv F : V 1-1 onto On t t u t v t ¬ v R u
46 df-fr R Fr V t t V t u t v t ¬ v R u
47 33 biantrur t t V t
48 47 imbi1i t u t v t ¬ v R u t V t u t v t ¬ v R u
49 48 albii t t u t v t ¬ v R u t t V t u t v t ¬ v R u
50 46 49 bitr4i R Fr V t t u t v t ¬ v R u
51 45 50 sylibr F : V 1-1 onto On R Fr V
52 2 ffvelcdmda F : V 1-1 onto On w V F w On
53 52 elvd F : V 1-1 onto On F w On
54 2 ffvelcdmda F : V 1-1 onto On z V F z On
55 54 elvd F : V 1-1 onto On F z On
56 oneltri F w On F z On F w F z F z F w F w = F z
57 53 55 56 syl2anc F : V 1-1 onto On F w F z F z F w F w = F z
58 3orcomb F w F z F z F w F w = F z F w F z F w = F z F z F w
59 57 58 sylib F : V 1-1 onto On F w F z F w = F z F z F w
60 vex w V
61 vex z V
62 fveq2 x = w F x = F w
63 62 eleq1d x = w F x F y F w F y
64 fveq2 y = z F y = F z
65 64 eleq2d y = z F w F y F w F z
66 60 61 63 65 1 brab w R z F w F z
67 66 biimpri F w F z w R z
68 67 a1i F : V 1-1 onto On F w F z w R z
69 f1of1 F : V 1-1 onto On F : V 1-1 On
70 f1veqaeq F : V 1-1 On w V z V F w = F z w = z
71 60 61 70 mpanr12 F : V 1-1 On F w = F z w = z
72 69 71 syl F : V 1-1 onto On F w = F z w = z
73 fveq2 x = z F x = F z
74 73 eleq1d x = z F x F y F z F y
75 fveq2 y = w F y = F w
76 75 eleq2d y = w F z F y F z F w
77 61 60 74 76 1 brab z R w F z F w
78 77 biimpri F z F w z R w
79 78 a1i F : V 1-1 onto On F z F w z R w
80 68 72 79 3orim123d F : V 1-1 onto On F w F z F w = F z F z F w w R z w = z z R w
81 59 80 mpd F : V 1-1 onto On w R z w = z z R w
82 81 ralrimivw F : V 1-1 onto On z V w R z w = z z R w
83 82 ralrimivw F : V 1-1 onto On w V z V w R z w = z z R w
84 dfwe2 R We V R Fr V w V z V w R z w = z z R w
85 51 83 84 sylanbrc F : V 1-1 onto On R We V