| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vonf1owev.1 |
|
| 2 |
|
f1of |
|
| 3 |
2
|
fimassd |
|
| 4 |
|
f1odm |
|
| 5 |
4
|
ineq1d |
|
| 6 |
5
|
neeq1d |
|
| 7 |
|
inv1 |
|
| 8 |
7
|
ineqcomi |
|
| 9 |
8
|
neeq1i |
|
| 10 |
6 9
|
bitr2di |
|
| 11 |
10
|
biimpa |
|
| 12 |
11
|
imadisjlnd |
|
| 13 |
|
onssmin |
|
| 14 |
3 12 13
|
syl2an2r |
|
| 15 |
14
|
ex |
|
| 16 |
|
vex |
|
| 17 |
|
vex |
|
| 18 |
|
fveq2 |
|
| 19 |
18
|
eleq1d |
|
| 20 |
|
fveq2 |
|
| 21 |
20
|
eleq2d |
|
| 22 |
16 17 19 21 1
|
brab |
|
| 23 |
22
|
notbii |
|
| 24 |
2
|
ffvelcdmda |
|
| 25 |
24
|
elvd |
|
| 26 |
2
|
ffvelcdmda |
|
| 27 |
26
|
elvd |
|
| 28 |
|
ontri1 |
|
| 29 |
25 27 28
|
syl2anc |
|
| 30 |
23 29
|
bitr4id |
|
| 31 |
30
|
ralbidv |
|
| 32 |
|
f1ofn |
|
| 33 |
|
ssv |
|
| 34 |
|
sseq2 |
|
| 35 |
34
|
ralima |
|
| 36 |
32 33 35
|
sylancl |
|
| 37 |
31 36
|
bitr4d |
|
| 38 |
37
|
rexbidv |
|
| 39 |
|
sseq1 |
|
| 40 |
39
|
ralbidv |
|
| 41 |
40
|
rexima |
|
| 42 |
32 33 41
|
sylancl |
|
| 43 |
38 42
|
bitr4d |
|
| 44 |
15 43
|
sylibrd |
|
| 45 |
44
|
alrimiv |
|
| 46 |
|
df-fr |
|
| 47 |
33
|
biantrur |
|
| 48 |
47
|
imbi1i |
|
| 49 |
48
|
albii |
|
| 50 |
46 49
|
bitr4i |
|
| 51 |
45 50
|
sylibr |
|
| 52 |
2
|
ffvelcdmda |
|
| 53 |
52
|
elvd |
|
| 54 |
2
|
ffvelcdmda |
|
| 55 |
54
|
elvd |
|
| 56 |
|
oneltri |
|
| 57 |
53 55 56
|
syl2anc |
|
| 58 |
|
3orcomb |
|
| 59 |
57 58
|
sylib |
|
| 60 |
|
vex |
|
| 61 |
|
vex |
|
| 62 |
|
fveq2 |
|
| 63 |
62
|
eleq1d |
|
| 64 |
|
fveq2 |
|
| 65 |
64
|
eleq2d |
|
| 66 |
60 61 63 65 1
|
brab |
|
| 67 |
66
|
biimpri |
|
| 68 |
67
|
a1i |
|
| 69 |
|
f1of1 |
|
| 70 |
|
f1veqaeq |
|
| 71 |
60 61 70
|
mpanr12 |
|
| 72 |
69 71
|
syl |
|
| 73 |
|
fveq2 |
|
| 74 |
73
|
eleq1d |
|
| 75 |
|
fveq2 |
|
| 76 |
75
|
eleq2d |
|
| 77 |
61 60 74 76 1
|
brab |
|
| 78 |
77
|
biimpri |
|
| 79 |
78
|
a1i |
|
| 80 |
68 72 79
|
3orim123d |
|
| 81 |
59 80
|
mpd |
|
| 82 |
81
|
ralrimivw |
|
| 83 |
82
|
ralrimivw |
|
| 84 |
|
dfwe2 |
|
| 85 |
51 83 84
|
sylanbrc |
|