| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vonf1owev.1 |
|- R = { <. x , y >. | ( F ` x ) e. ( F ` y ) } |
| 2 |
|
f1of |
|- ( F : _V -1-1-onto-> On -> F : _V --> On ) |
| 3 |
2
|
fimassd |
|- ( F : _V -1-1-onto-> On -> ( F " t ) C_ On ) |
| 4 |
|
f1odm |
|- ( F : _V -1-1-onto-> On -> dom F = _V ) |
| 5 |
4
|
ineq1d |
|- ( F : _V -1-1-onto-> On -> ( dom F i^i t ) = ( _V i^i t ) ) |
| 6 |
5
|
neeq1d |
|- ( F : _V -1-1-onto-> On -> ( ( dom F i^i t ) =/= (/) <-> ( _V i^i t ) =/= (/) ) ) |
| 7 |
|
inv1 |
|- ( t i^i _V ) = t |
| 8 |
7
|
ineqcomi |
|- ( _V i^i t ) = t |
| 9 |
8
|
neeq1i |
|- ( ( _V i^i t ) =/= (/) <-> t =/= (/) ) |
| 10 |
6 9
|
bitr2di |
|- ( F : _V -1-1-onto-> On -> ( t =/= (/) <-> ( dom F i^i t ) =/= (/) ) ) |
| 11 |
10
|
biimpa |
|- ( ( F : _V -1-1-onto-> On /\ t =/= (/) ) -> ( dom F i^i t ) =/= (/) ) |
| 12 |
11
|
imadisjlnd |
|- ( ( F : _V -1-1-onto-> On /\ t =/= (/) ) -> ( F " t ) =/= (/) ) |
| 13 |
|
onssmin |
|- ( ( ( F " t ) C_ On /\ ( F " t ) =/= (/) ) -> E. r e. ( F " t ) A. s e. ( F " t ) r C_ s ) |
| 14 |
3 12 13
|
syl2an2r |
|- ( ( F : _V -1-1-onto-> On /\ t =/= (/) ) -> E. r e. ( F " t ) A. s e. ( F " t ) r C_ s ) |
| 15 |
14
|
ex |
|- ( F : _V -1-1-onto-> On -> ( t =/= (/) -> E. r e. ( F " t ) A. s e. ( F " t ) r C_ s ) ) |
| 16 |
|
vex |
|- v e. _V |
| 17 |
|
vex |
|- u e. _V |
| 18 |
|
fveq2 |
|- ( x = v -> ( F ` x ) = ( F ` v ) ) |
| 19 |
18
|
eleq1d |
|- ( x = v -> ( ( F ` x ) e. ( F ` y ) <-> ( F ` v ) e. ( F ` y ) ) ) |
| 20 |
|
fveq2 |
|- ( y = u -> ( F ` y ) = ( F ` u ) ) |
| 21 |
20
|
eleq2d |
|- ( y = u -> ( ( F ` v ) e. ( F ` y ) <-> ( F ` v ) e. ( F ` u ) ) ) |
| 22 |
16 17 19 21 1
|
brab |
|- ( v R u <-> ( F ` v ) e. ( F ` u ) ) |
| 23 |
22
|
notbii |
|- ( -. v R u <-> -. ( F ` v ) e. ( F ` u ) ) |
| 24 |
2
|
ffvelcdmda |
|- ( ( F : _V -1-1-onto-> On /\ u e. _V ) -> ( F ` u ) e. On ) |
| 25 |
24
|
elvd |
|- ( F : _V -1-1-onto-> On -> ( F ` u ) e. On ) |
| 26 |
2
|
ffvelcdmda |
|- ( ( F : _V -1-1-onto-> On /\ v e. _V ) -> ( F ` v ) e. On ) |
| 27 |
26
|
elvd |
|- ( F : _V -1-1-onto-> On -> ( F ` v ) e. On ) |
| 28 |
|
ontri1 |
|- ( ( ( F ` u ) e. On /\ ( F ` v ) e. On ) -> ( ( F ` u ) C_ ( F ` v ) <-> -. ( F ` v ) e. ( F ` u ) ) ) |
| 29 |
25 27 28
|
syl2anc |
|- ( F : _V -1-1-onto-> On -> ( ( F ` u ) C_ ( F ` v ) <-> -. ( F ` v ) e. ( F ` u ) ) ) |
| 30 |
23 29
|
bitr4id |
|- ( F : _V -1-1-onto-> On -> ( -. v R u <-> ( F ` u ) C_ ( F ` v ) ) ) |
| 31 |
30
|
ralbidv |
|- ( F : _V -1-1-onto-> On -> ( A. v e. t -. v R u <-> A. v e. t ( F ` u ) C_ ( F ` v ) ) ) |
| 32 |
|
f1ofn |
|- ( F : _V -1-1-onto-> On -> F Fn _V ) |
| 33 |
|
ssv |
|- t C_ _V |
| 34 |
|
sseq2 |
|- ( s = ( F ` v ) -> ( ( F ` u ) C_ s <-> ( F ` u ) C_ ( F ` v ) ) ) |
| 35 |
34
|
ralima |
|- ( ( F Fn _V /\ t C_ _V ) -> ( A. s e. ( F " t ) ( F ` u ) C_ s <-> A. v e. t ( F ` u ) C_ ( F ` v ) ) ) |
| 36 |
32 33 35
|
sylancl |
|- ( F : _V -1-1-onto-> On -> ( A. s e. ( F " t ) ( F ` u ) C_ s <-> A. v e. t ( F ` u ) C_ ( F ` v ) ) ) |
| 37 |
31 36
|
bitr4d |
|- ( F : _V -1-1-onto-> On -> ( A. v e. t -. v R u <-> A. s e. ( F " t ) ( F ` u ) C_ s ) ) |
| 38 |
37
|
rexbidv |
|- ( F : _V -1-1-onto-> On -> ( E. u e. t A. v e. t -. v R u <-> E. u e. t A. s e. ( F " t ) ( F ` u ) C_ s ) ) |
| 39 |
|
sseq1 |
|- ( r = ( F ` u ) -> ( r C_ s <-> ( F ` u ) C_ s ) ) |
| 40 |
39
|
ralbidv |
|- ( r = ( F ` u ) -> ( A. s e. ( F " t ) r C_ s <-> A. s e. ( F " t ) ( F ` u ) C_ s ) ) |
| 41 |
40
|
rexima |
|- ( ( F Fn _V /\ t C_ _V ) -> ( E. r e. ( F " t ) A. s e. ( F " t ) r C_ s <-> E. u e. t A. s e. ( F " t ) ( F ` u ) C_ s ) ) |
| 42 |
32 33 41
|
sylancl |
|- ( F : _V -1-1-onto-> On -> ( E. r e. ( F " t ) A. s e. ( F " t ) r C_ s <-> E. u e. t A. s e. ( F " t ) ( F ` u ) C_ s ) ) |
| 43 |
38 42
|
bitr4d |
|- ( F : _V -1-1-onto-> On -> ( E. u e. t A. v e. t -. v R u <-> E. r e. ( F " t ) A. s e. ( F " t ) r C_ s ) ) |
| 44 |
15 43
|
sylibrd |
|- ( F : _V -1-1-onto-> On -> ( t =/= (/) -> E. u e. t A. v e. t -. v R u ) ) |
| 45 |
44
|
alrimiv |
|- ( F : _V -1-1-onto-> On -> A. t ( t =/= (/) -> E. u e. t A. v e. t -. v R u ) ) |
| 46 |
|
df-fr |
|- ( R Fr _V <-> A. t ( ( t C_ _V /\ t =/= (/) ) -> E. u e. t A. v e. t -. v R u ) ) |
| 47 |
33
|
biantrur |
|- ( t =/= (/) <-> ( t C_ _V /\ t =/= (/) ) ) |
| 48 |
47
|
imbi1i |
|- ( ( t =/= (/) -> E. u e. t A. v e. t -. v R u ) <-> ( ( t C_ _V /\ t =/= (/) ) -> E. u e. t A. v e. t -. v R u ) ) |
| 49 |
48
|
albii |
|- ( A. t ( t =/= (/) -> E. u e. t A. v e. t -. v R u ) <-> A. t ( ( t C_ _V /\ t =/= (/) ) -> E. u e. t A. v e. t -. v R u ) ) |
| 50 |
46 49
|
bitr4i |
|- ( R Fr _V <-> A. t ( t =/= (/) -> E. u e. t A. v e. t -. v R u ) ) |
| 51 |
45 50
|
sylibr |
|- ( F : _V -1-1-onto-> On -> R Fr _V ) |
| 52 |
2
|
ffvelcdmda |
|- ( ( F : _V -1-1-onto-> On /\ w e. _V ) -> ( F ` w ) e. On ) |
| 53 |
52
|
elvd |
|- ( F : _V -1-1-onto-> On -> ( F ` w ) e. On ) |
| 54 |
2
|
ffvelcdmda |
|- ( ( F : _V -1-1-onto-> On /\ z e. _V ) -> ( F ` z ) e. On ) |
| 55 |
54
|
elvd |
|- ( F : _V -1-1-onto-> On -> ( F ` z ) e. On ) |
| 56 |
|
oneltri |
|- ( ( ( F ` w ) e. On /\ ( F ` z ) e. On ) -> ( ( F ` w ) e. ( F ` z ) \/ ( F ` z ) e. ( F ` w ) \/ ( F ` w ) = ( F ` z ) ) ) |
| 57 |
53 55 56
|
syl2anc |
|- ( F : _V -1-1-onto-> On -> ( ( F ` w ) e. ( F ` z ) \/ ( F ` z ) e. ( F ` w ) \/ ( F ` w ) = ( F ` z ) ) ) |
| 58 |
|
3orcomb |
|- ( ( ( F ` w ) e. ( F ` z ) \/ ( F ` z ) e. ( F ` w ) \/ ( F ` w ) = ( F ` z ) ) <-> ( ( F ` w ) e. ( F ` z ) \/ ( F ` w ) = ( F ` z ) \/ ( F ` z ) e. ( F ` w ) ) ) |
| 59 |
57 58
|
sylib |
|- ( F : _V -1-1-onto-> On -> ( ( F ` w ) e. ( F ` z ) \/ ( F ` w ) = ( F ` z ) \/ ( F ` z ) e. ( F ` w ) ) ) |
| 60 |
|
vex |
|- w e. _V |
| 61 |
|
vex |
|- z e. _V |
| 62 |
|
fveq2 |
|- ( x = w -> ( F ` x ) = ( F ` w ) ) |
| 63 |
62
|
eleq1d |
|- ( x = w -> ( ( F ` x ) e. ( F ` y ) <-> ( F ` w ) e. ( F ` y ) ) ) |
| 64 |
|
fveq2 |
|- ( y = z -> ( F ` y ) = ( F ` z ) ) |
| 65 |
64
|
eleq2d |
|- ( y = z -> ( ( F ` w ) e. ( F ` y ) <-> ( F ` w ) e. ( F ` z ) ) ) |
| 66 |
60 61 63 65 1
|
brab |
|- ( w R z <-> ( F ` w ) e. ( F ` z ) ) |
| 67 |
66
|
biimpri |
|- ( ( F ` w ) e. ( F ` z ) -> w R z ) |
| 68 |
67
|
a1i |
|- ( F : _V -1-1-onto-> On -> ( ( F ` w ) e. ( F ` z ) -> w R z ) ) |
| 69 |
|
f1of1 |
|- ( F : _V -1-1-onto-> On -> F : _V -1-1-> On ) |
| 70 |
|
f1veqaeq |
|- ( ( F : _V -1-1-> On /\ ( w e. _V /\ z e. _V ) ) -> ( ( F ` w ) = ( F ` z ) -> w = z ) ) |
| 71 |
60 61 70
|
mpanr12 |
|- ( F : _V -1-1-> On -> ( ( F ` w ) = ( F ` z ) -> w = z ) ) |
| 72 |
69 71
|
syl |
|- ( F : _V -1-1-onto-> On -> ( ( F ` w ) = ( F ` z ) -> w = z ) ) |
| 73 |
|
fveq2 |
|- ( x = z -> ( F ` x ) = ( F ` z ) ) |
| 74 |
73
|
eleq1d |
|- ( x = z -> ( ( F ` x ) e. ( F ` y ) <-> ( F ` z ) e. ( F ` y ) ) ) |
| 75 |
|
fveq2 |
|- ( y = w -> ( F ` y ) = ( F ` w ) ) |
| 76 |
75
|
eleq2d |
|- ( y = w -> ( ( F ` z ) e. ( F ` y ) <-> ( F ` z ) e. ( F ` w ) ) ) |
| 77 |
61 60 74 76 1
|
brab |
|- ( z R w <-> ( F ` z ) e. ( F ` w ) ) |
| 78 |
77
|
biimpri |
|- ( ( F ` z ) e. ( F ` w ) -> z R w ) |
| 79 |
78
|
a1i |
|- ( F : _V -1-1-onto-> On -> ( ( F ` z ) e. ( F ` w ) -> z R w ) ) |
| 80 |
68 72 79
|
3orim123d |
|- ( F : _V -1-1-onto-> On -> ( ( ( F ` w ) e. ( F ` z ) \/ ( F ` w ) = ( F ` z ) \/ ( F ` z ) e. ( F ` w ) ) -> ( w R z \/ w = z \/ z R w ) ) ) |
| 81 |
59 80
|
mpd |
|- ( F : _V -1-1-onto-> On -> ( w R z \/ w = z \/ z R w ) ) |
| 82 |
81
|
ralrimivw |
|- ( F : _V -1-1-onto-> On -> A. z e. _V ( w R z \/ w = z \/ z R w ) ) |
| 83 |
82
|
ralrimivw |
|- ( F : _V -1-1-onto-> On -> A. w e. _V A. z e. _V ( w R z \/ w = z \/ z R w ) ) |
| 84 |
|
dfwe2 |
|- ( R We _V <-> ( R Fr _V /\ A. w e. _V A. z e. _V ( w R z \/ w = z \/ z R w ) ) ) |
| 85 |
51 83 84
|
sylanbrc |
|- ( F : _V -1-1-onto-> On -> R We _V ) |