Metamath Proof Explorer


Theorem onvf1odlem4

Description: Lemma for onvf1od . If the range of F does not exist, then it must equal the universe. (Contributed by BTernaryTau, 4-Dec-2025)

Ref Expression
Hypotheses onvf1odlem4.1 ( 𝜑 → ∀ 𝑧 ( 𝑧 ≠ ∅ → ( 𝐺𝑧 ) ∈ 𝑧 ) )
onvf1odlem4.2 𝑀 = { 𝑥 ∈ On ∣ ∃ 𝑦 ∈ ( 𝑅1𝑥 ) ¬ 𝑦 ∈ ran 𝑤 }
onvf1odlem4.3 𝑁 = ( 𝐺 ‘ ( ( 𝑅1𝑀 ) ∖ ran 𝑤 ) )
onvf1odlem4.4 𝐹 = recs ( ( 𝑤 ∈ V ↦ 𝑁 ) )
onvf1odlem4.5 𝐵 = { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1𝑢 ) ¬ 𝑣 ∈ ( 𝐹𝑡 ) }
onvf1odlem4.6 𝐶 = ( 𝐺 ‘ ( ( 𝑅1𝐵 ) ∖ ( 𝐹𝑡 ) ) )
Assertion onvf1odlem4 ( 𝜑 → ( ¬ ran 𝐹 ∈ V → ran 𝐹 = V ) )

Proof

Step Hyp Ref Expression
1 onvf1odlem4.1 ( 𝜑 → ∀ 𝑧 ( 𝑧 ≠ ∅ → ( 𝐺𝑧 ) ∈ 𝑧 ) )
2 onvf1odlem4.2 𝑀 = { 𝑥 ∈ On ∣ ∃ 𝑦 ∈ ( 𝑅1𝑥 ) ¬ 𝑦 ∈ ran 𝑤 }
3 onvf1odlem4.3 𝑁 = ( 𝐺 ‘ ( ( 𝑅1𝑀 ) ∖ ran 𝑤 ) )
4 onvf1odlem4.4 𝐹 = recs ( ( 𝑤 ∈ V ↦ 𝑁 ) )
5 onvf1odlem4.5 𝐵 = { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1𝑢 ) ¬ 𝑣 ∈ ( 𝐹𝑡 ) }
6 onvf1odlem4.6 𝐶 = ( 𝐺 ‘ ( ( 𝑅1𝐵 ) ∖ ( 𝐹𝑡 ) ) )
7 eqv ( ran 𝐹 = V ↔ ∀ 𝑣 𝑣 ∈ ran 𝐹 )
8 exnal ( ∃ 𝑣 ¬ 𝑣 ∈ ran 𝐹 ↔ ¬ ∀ 𝑣 𝑣 ∈ ran 𝐹 )
9 4 tfr1 𝐹 Fn On
10 fvelrnb ( 𝐹 Fn On → ( 𝑠 ∈ ran 𝐹 ↔ ∃ 𝑡 ∈ On ( 𝐹𝑡 ) = 𝑠 ) )
11 9 10 ax-mp ( 𝑠 ∈ ran 𝐹 ↔ ∃ 𝑡 ∈ On ( 𝐹𝑡 ) = 𝑠 )
12 2 3 4 5 6 onvf1odlem3 ( 𝑡 ∈ On → ( 𝐹𝑡 ) = 𝐶 )
13 12 adantl ( ( 𝜑𝑡 ∈ On ) → ( 𝐹𝑡 ) = 𝐶 )
14 fnfun ( 𝐹 Fn On → Fun 𝐹 )
15 9 14 ax-mp Fun 𝐹
16 vex 𝑡 ∈ V
17 16 funimaex ( Fun 𝐹 → ( 𝐹𝑡 ) ∈ V )
18 15 17 ax-mp ( 𝐹𝑡 ) ∈ V
19 1 5 6 onvf1odlem2 ( 𝜑 → ( ( 𝐹𝑡 ) ∈ V → 𝐶 ∈ ( ( 𝑅1𝐵 ) ∖ ( 𝐹𝑡 ) ) ) )
20 18 19 mpi ( 𝜑𝐶 ∈ ( ( 𝑅1𝐵 ) ∖ ( 𝐹𝑡 ) ) )
21 20 eldifad ( 𝜑𝐶 ∈ ( 𝑅1𝐵 ) )
22 21 adantr ( ( 𝜑𝑡 ∈ On ) → 𝐶 ∈ ( 𝑅1𝐵 ) )
23 13 22 eqeltrd ( ( 𝜑𝑡 ∈ On ) → ( 𝐹𝑡 ) ∈ ( 𝑅1𝐵 ) )
24 rankr1ai ( ( 𝐹𝑡 ) ∈ ( 𝑅1𝐵 ) → ( rank ‘ ( 𝐹𝑡 ) ) ∈ 𝐵 )
25 onvf1odlem1 ( ( 𝐹𝑡 ) ∈ V → ∃ 𝑢 ∈ On ∃ 𝑣 ∈ ( 𝑅1𝑢 ) ¬ 𝑣 ∈ ( 𝐹𝑡 ) )
26 18 25 ax-mp 𝑢 ∈ On ∃ 𝑣 ∈ ( 𝑅1𝑢 ) ¬ 𝑣 ∈ ( 𝐹𝑡 )
27 onintrab2 ( ∃ 𝑢 ∈ On ∃ 𝑣 ∈ ( 𝑅1𝑢 ) ¬ 𝑣 ∈ ( 𝐹𝑡 ) ↔ { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1𝑢 ) ¬ 𝑣 ∈ ( 𝐹𝑡 ) } ∈ On )
28 5 eleq1i ( 𝐵 ∈ On ↔ { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1𝑢 ) ¬ 𝑣 ∈ ( 𝐹𝑡 ) } ∈ On )
29 27 28 bitr4i ( ∃ 𝑢 ∈ On ∃ 𝑣 ∈ ( 𝑅1𝑢 ) ¬ 𝑣 ∈ ( 𝐹𝑡 ) ↔ 𝐵 ∈ On )
30 26 29 mpbi 𝐵 ∈ On
31 30 oneli ( ( rank ‘ ( 𝐹𝑡 ) ) ∈ 𝐵 → ( rank ‘ ( 𝐹𝑡 ) ) ∈ On )
32 fveq2 ( 𝑢 = ( rank ‘ ( 𝐹𝑡 ) ) → ( 𝑅1𝑢 ) = ( 𝑅1 ‘ ( rank ‘ ( 𝐹𝑡 ) ) ) )
33 32 rexeqdv ( 𝑢 = ( rank ‘ ( 𝐹𝑡 ) ) → ( ∃ 𝑣 ∈ ( 𝑅1𝑢 ) ¬ 𝑣 ∈ ( 𝐹𝑡 ) ↔ ∃ 𝑣 ∈ ( 𝑅1 ‘ ( rank ‘ ( 𝐹𝑡 ) ) ) ¬ 𝑣 ∈ ( 𝐹𝑡 ) ) )
34 33 onnminsb ( ( rank ‘ ( 𝐹𝑡 ) ) ∈ On → ( ( rank ‘ ( 𝐹𝑡 ) ) ∈ { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1𝑢 ) ¬ 𝑣 ∈ ( 𝐹𝑡 ) } → ¬ ∃ 𝑣 ∈ ( 𝑅1 ‘ ( rank ‘ ( 𝐹𝑡 ) ) ) ¬ 𝑣 ∈ ( 𝐹𝑡 ) ) )
35 5 eleq2i ( ( rank ‘ ( 𝐹𝑡 ) ) ∈ 𝐵 ↔ ( rank ‘ ( 𝐹𝑡 ) ) ∈ { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1𝑢 ) ¬ 𝑣 ∈ ( 𝐹𝑡 ) } )
36 dfral2 ( ∀ 𝑣 ∈ ( 𝑅1 ‘ ( rank ‘ ( 𝐹𝑡 ) ) ) 𝑣 ∈ ( 𝐹𝑡 ) ↔ ¬ ∃ 𝑣 ∈ ( 𝑅1 ‘ ( rank ‘ ( 𝐹𝑡 ) ) ) ¬ 𝑣 ∈ ( 𝐹𝑡 ) )
37 34 35 36 3imtr4g ( ( rank ‘ ( 𝐹𝑡 ) ) ∈ On → ( ( rank ‘ ( 𝐹𝑡 ) ) ∈ 𝐵 → ∀ 𝑣 ∈ ( 𝑅1 ‘ ( rank ‘ ( 𝐹𝑡 ) ) ) 𝑣 ∈ ( 𝐹𝑡 ) ) )
38 31 37 mpcom ( ( rank ‘ ( 𝐹𝑡 ) ) ∈ 𝐵 → ∀ 𝑣 ∈ ( 𝑅1 ‘ ( rank ‘ ( 𝐹𝑡 ) ) ) 𝑣 ∈ ( 𝐹𝑡 ) )
39 imassrn ( 𝐹𝑡 ) ⊆ ran 𝐹
40 39 sseli ( 𝑣 ∈ ( 𝐹𝑡 ) → 𝑣 ∈ ran 𝐹 )
41 40 ralimi ( ∀ 𝑣 ∈ ( 𝑅1 ‘ ( rank ‘ ( 𝐹𝑡 ) ) ) 𝑣 ∈ ( 𝐹𝑡 ) → ∀ 𝑣 ∈ ( 𝑅1 ‘ ( rank ‘ ( 𝐹𝑡 ) ) ) 𝑣 ∈ ran 𝐹 )
42 38 41 syl ( ( rank ‘ ( 𝐹𝑡 ) ) ∈ 𝐵 → ∀ 𝑣 ∈ ( 𝑅1 ‘ ( rank ‘ ( 𝐹𝑡 ) ) ) 𝑣 ∈ ran 𝐹 )
43 23 24 42 3syl ( ( 𝜑𝑡 ∈ On ) → ∀ 𝑣 ∈ ( 𝑅1 ‘ ( rank ‘ ( 𝐹𝑡 ) ) ) 𝑣 ∈ ran 𝐹 )
44 2fveq3 ( ( 𝐹𝑡 ) = 𝑠 → ( 𝑅1 ‘ ( rank ‘ ( 𝐹𝑡 ) ) ) = ( 𝑅1 ‘ ( rank ‘ 𝑠 ) ) )
45 44 raleqdv ( ( 𝐹𝑡 ) = 𝑠 → ( ∀ 𝑣 ∈ ( 𝑅1 ‘ ( rank ‘ ( 𝐹𝑡 ) ) ) 𝑣 ∈ ran 𝐹 ↔ ∀ 𝑣 ∈ ( 𝑅1 ‘ ( rank ‘ 𝑠 ) ) 𝑣 ∈ ran 𝐹 ) )
46 43 45 syl5ibcom ( ( 𝜑𝑡 ∈ On ) → ( ( 𝐹𝑡 ) = 𝑠 → ∀ 𝑣 ∈ ( 𝑅1 ‘ ( rank ‘ 𝑠 ) ) 𝑣 ∈ ran 𝐹 ) )
47 46 rexlimdva ( 𝜑 → ( ∃ 𝑡 ∈ On ( 𝐹𝑡 ) = 𝑠 → ∀ 𝑣 ∈ ( 𝑅1 ‘ ( rank ‘ 𝑠 ) ) 𝑣 ∈ ran 𝐹 ) )
48 11 47 biimtrid ( 𝜑 → ( 𝑠 ∈ ran 𝐹 → ∀ 𝑣 ∈ ( 𝑅1 ‘ ( rank ‘ 𝑠 ) ) 𝑣 ∈ ran 𝐹 ) )
49 48 imp ( ( 𝜑𝑠 ∈ ran 𝐹 ) → ∀ 𝑣 ∈ ( 𝑅1 ‘ ( rank ‘ 𝑠 ) ) 𝑣 ∈ ran 𝐹 )
50 df-ral ( ∀ 𝑣 ∈ ( 𝑅1 ‘ ( rank ‘ 𝑠 ) ) 𝑣 ∈ ran 𝐹 ↔ ∀ 𝑣 ( 𝑣 ∈ ( 𝑅1 ‘ ( rank ‘ 𝑠 ) ) → 𝑣 ∈ ran 𝐹 ) )
51 49 50 sylib ( ( 𝜑𝑠 ∈ ran 𝐹 ) → ∀ 𝑣 ( 𝑣 ∈ ( 𝑅1 ‘ ( rank ‘ 𝑠 ) ) → 𝑣 ∈ ran 𝐹 ) )
52 51 19.21bi ( ( 𝜑𝑠 ∈ ran 𝐹 ) → ( 𝑣 ∈ ( 𝑅1 ‘ ( rank ‘ 𝑠 ) ) → 𝑣 ∈ ran 𝐹 ) )
53 52 con3d ( ( 𝜑𝑠 ∈ ran 𝐹 ) → ( ¬ 𝑣 ∈ ran 𝐹 → ¬ 𝑣 ∈ ( 𝑅1 ‘ ( rank ‘ 𝑠 ) ) ) )
54 rankon ( rank ‘ 𝑠 ) ∈ On
55 vex 𝑣 ∈ V
56 55 ssrankr1 ( ( rank ‘ 𝑠 ) ∈ On → ( ( rank ‘ 𝑠 ) ⊆ ( rank ‘ 𝑣 ) ↔ ¬ 𝑣 ∈ ( 𝑅1 ‘ ( rank ‘ 𝑠 ) ) ) )
57 54 56 ax-mp ( ( rank ‘ 𝑠 ) ⊆ ( rank ‘ 𝑣 ) ↔ ¬ 𝑣 ∈ ( 𝑅1 ‘ ( rank ‘ 𝑠 ) ) )
58 53 57 imbitrrdi ( ( 𝜑𝑠 ∈ ran 𝐹 ) → ( ¬ 𝑣 ∈ ran 𝐹 → ( rank ‘ 𝑠 ) ⊆ ( rank ‘ 𝑣 ) ) )
59 58 impancom ( ( 𝜑 ∧ ¬ 𝑣 ∈ ran 𝐹 ) → ( 𝑠 ∈ ran 𝐹 → ( rank ‘ 𝑠 ) ⊆ ( rank ‘ 𝑣 ) ) )
60 59 ralrimiv ( ( 𝜑 ∧ ¬ 𝑣 ∈ ran 𝐹 ) → ∀ 𝑠 ∈ ran 𝐹 ( rank ‘ 𝑠 ) ⊆ ( rank ‘ 𝑣 ) )
61 rankon ( rank ‘ 𝑣 ) ∈ On
62 sseq2 ( 𝑟 = ( rank ‘ 𝑣 ) → ( ( rank ‘ 𝑠 ) ⊆ 𝑟 ↔ ( rank ‘ 𝑠 ) ⊆ ( rank ‘ 𝑣 ) ) )
63 62 ralbidv ( 𝑟 = ( rank ‘ 𝑣 ) → ( ∀ 𝑠 ∈ ran 𝐹 ( rank ‘ 𝑠 ) ⊆ 𝑟 ↔ ∀ 𝑠 ∈ ran 𝐹 ( rank ‘ 𝑠 ) ⊆ ( rank ‘ 𝑣 ) ) )
64 63 rspcev ( ( ( rank ‘ 𝑣 ) ∈ On ∧ ∀ 𝑠 ∈ ran 𝐹 ( rank ‘ 𝑠 ) ⊆ ( rank ‘ 𝑣 ) ) → ∃ 𝑟 ∈ On ∀ 𝑠 ∈ ran 𝐹 ( rank ‘ 𝑠 ) ⊆ 𝑟 )
65 61 64 mpan ( ∀ 𝑠 ∈ ran 𝐹 ( rank ‘ 𝑠 ) ⊆ ( rank ‘ 𝑣 ) → ∃ 𝑟 ∈ On ∀ 𝑠 ∈ ran 𝐹 ( rank ‘ 𝑠 ) ⊆ 𝑟 )
66 bndrank ( ∃ 𝑟 ∈ On ∀ 𝑠 ∈ ran 𝐹 ( rank ‘ 𝑠 ) ⊆ 𝑟 → ran 𝐹 ∈ V )
67 60 65 66 3syl ( ( 𝜑 ∧ ¬ 𝑣 ∈ ran 𝐹 ) → ran 𝐹 ∈ V )
68 67 expcom ( ¬ 𝑣 ∈ ran 𝐹 → ( 𝜑 → ran 𝐹 ∈ V ) )
69 68 exlimiv ( ∃ 𝑣 ¬ 𝑣 ∈ ran 𝐹 → ( 𝜑 → ran 𝐹 ∈ V ) )
70 8 69 sylbir ( ¬ ∀ 𝑣 𝑣 ∈ ran 𝐹 → ( 𝜑 → ran 𝐹 ∈ V ) )
71 7 70 sylnbi ( ¬ ran 𝐹 = V → ( 𝜑 → ran 𝐹 ∈ V ) )
72 71 com12 ( 𝜑 → ( ¬ ran 𝐹 = V → ran 𝐹 ∈ V ) )
73 72 con1d ( 𝜑 → ( ¬ ran 𝐹 ∈ V → ran 𝐹 = V ) )