| Step |
Hyp |
Ref |
Expression |
| 1 |
|
onvf1odlem4.1 |
|- ( ph -> A. z ( z =/= (/) -> ( G ` z ) e. z ) ) |
| 2 |
|
onvf1odlem4.2 |
|- M = |^| { x e. On | E. y e. ( R1 ` x ) -. y e. ran w } |
| 3 |
|
onvf1odlem4.3 |
|- N = ( G ` ( ( R1 ` M ) \ ran w ) ) |
| 4 |
|
onvf1odlem4.4 |
|- F = recs ( ( w e. _V |-> N ) ) |
| 5 |
|
onvf1odlem4.5 |
|- B = |^| { u e. On | E. v e. ( R1 ` u ) -. v e. ( F " t ) } |
| 6 |
|
onvf1odlem4.6 |
|- C = ( G ` ( ( R1 ` B ) \ ( F " t ) ) ) |
| 7 |
|
eqv |
|- ( ran F = _V <-> A. v v e. ran F ) |
| 8 |
|
exnal |
|- ( E. v -. v e. ran F <-> -. A. v v e. ran F ) |
| 9 |
4
|
tfr1 |
|- F Fn On |
| 10 |
|
fvelrnb |
|- ( F Fn On -> ( s e. ran F <-> E. t e. On ( F ` t ) = s ) ) |
| 11 |
9 10
|
ax-mp |
|- ( s e. ran F <-> E. t e. On ( F ` t ) = s ) |
| 12 |
2 3 4 5 6
|
onvf1odlem3 |
|- ( t e. On -> ( F ` t ) = C ) |
| 13 |
12
|
adantl |
|- ( ( ph /\ t e. On ) -> ( F ` t ) = C ) |
| 14 |
|
fnfun |
|- ( F Fn On -> Fun F ) |
| 15 |
9 14
|
ax-mp |
|- Fun F |
| 16 |
|
vex |
|- t e. _V |
| 17 |
16
|
funimaex |
|- ( Fun F -> ( F " t ) e. _V ) |
| 18 |
15 17
|
ax-mp |
|- ( F " t ) e. _V |
| 19 |
1 5 6
|
onvf1odlem2 |
|- ( ph -> ( ( F " t ) e. _V -> C e. ( ( R1 ` B ) \ ( F " t ) ) ) ) |
| 20 |
18 19
|
mpi |
|- ( ph -> C e. ( ( R1 ` B ) \ ( F " t ) ) ) |
| 21 |
20
|
eldifad |
|- ( ph -> C e. ( R1 ` B ) ) |
| 22 |
21
|
adantr |
|- ( ( ph /\ t e. On ) -> C e. ( R1 ` B ) ) |
| 23 |
13 22
|
eqeltrd |
|- ( ( ph /\ t e. On ) -> ( F ` t ) e. ( R1 ` B ) ) |
| 24 |
|
rankr1ai |
|- ( ( F ` t ) e. ( R1 ` B ) -> ( rank ` ( F ` t ) ) e. B ) |
| 25 |
|
onvf1odlem1 |
|- ( ( F " t ) e. _V -> E. u e. On E. v e. ( R1 ` u ) -. v e. ( F " t ) ) |
| 26 |
18 25
|
ax-mp |
|- E. u e. On E. v e. ( R1 ` u ) -. v e. ( F " t ) |
| 27 |
|
onintrab2 |
|- ( E. u e. On E. v e. ( R1 ` u ) -. v e. ( F " t ) <-> |^| { u e. On | E. v e. ( R1 ` u ) -. v e. ( F " t ) } e. On ) |
| 28 |
5
|
eleq1i |
|- ( B e. On <-> |^| { u e. On | E. v e. ( R1 ` u ) -. v e. ( F " t ) } e. On ) |
| 29 |
27 28
|
bitr4i |
|- ( E. u e. On E. v e. ( R1 ` u ) -. v e. ( F " t ) <-> B e. On ) |
| 30 |
26 29
|
mpbi |
|- B e. On |
| 31 |
30
|
oneli |
|- ( ( rank ` ( F ` t ) ) e. B -> ( rank ` ( F ` t ) ) e. On ) |
| 32 |
|
fveq2 |
|- ( u = ( rank ` ( F ` t ) ) -> ( R1 ` u ) = ( R1 ` ( rank ` ( F ` t ) ) ) ) |
| 33 |
32
|
rexeqdv |
|- ( u = ( rank ` ( F ` t ) ) -> ( E. v e. ( R1 ` u ) -. v e. ( F " t ) <-> E. v e. ( R1 ` ( rank ` ( F ` t ) ) ) -. v e. ( F " t ) ) ) |
| 34 |
33
|
onnminsb |
|- ( ( rank ` ( F ` t ) ) e. On -> ( ( rank ` ( F ` t ) ) e. |^| { u e. On | E. v e. ( R1 ` u ) -. v e. ( F " t ) } -> -. E. v e. ( R1 ` ( rank ` ( F ` t ) ) ) -. v e. ( F " t ) ) ) |
| 35 |
5
|
eleq2i |
|- ( ( rank ` ( F ` t ) ) e. B <-> ( rank ` ( F ` t ) ) e. |^| { u e. On | E. v e. ( R1 ` u ) -. v e. ( F " t ) } ) |
| 36 |
|
dfral2 |
|- ( A. v e. ( R1 ` ( rank ` ( F ` t ) ) ) v e. ( F " t ) <-> -. E. v e. ( R1 ` ( rank ` ( F ` t ) ) ) -. v e. ( F " t ) ) |
| 37 |
34 35 36
|
3imtr4g |
|- ( ( rank ` ( F ` t ) ) e. On -> ( ( rank ` ( F ` t ) ) e. B -> A. v e. ( R1 ` ( rank ` ( F ` t ) ) ) v e. ( F " t ) ) ) |
| 38 |
31 37
|
mpcom |
|- ( ( rank ` ( F ` t ) ) e. B -> A. v e. ( R1 ` ( rank ` ( F ` t ) ) ) v e. ( F " t ) ) |
| 39 |
|
imassrn |
|- ( F " t ) C_ ran F |
| 40 |
39
|
sseli |
|- ( v e. ( F " t ) -> v e. ran F ) |
| 41 |
40
|
ralimi |
|- ( A. v e. ( R1 ` ( rank ` ( F ` t ) ) ) v e. ( F " t ) -> A. v e. ( R1 ` ( rank ` ( F ` t ) ) ) v e. ran F ) |
| 42 |
38 41
|
syl |
|- ( ( rank ` ( F ` t ) ) e. B -> A. v e. ( R1 ` ( rank ` ( F ` t ) ) ) v e. ran F ) |
| 43 |
23 24 42
|
3syl |
|- ( ( ph /\ t e. On ) -> A. v e. ( R1 ` ( rank ` ( F ` t ) ) ) v e. ran F ) |
| 44 |
|
2fveq3 |
|- ( ( F ` t ) = s -> ( R1 ` ( rank ` ( F ` t ) ) ) = ( R1 ` ( rank ` s ) ) ) |
| 45 |
44
|
raleqdv |
|- ( ( F ` t ) = s -> ( A. v e. ( R1 ` ( rank ` ( F ` t ) ) ) v e. ran F <-> A. v e. ( R1 ` ( rank ` s ) ) v e. ran F ) ) |
| 46 |
43 45
|
syl5ibcom |
|- ( ( ph /\ t e. On ) -> ( ( F ` t ) = s -> A. v e. ( R1 ` ( rank ` s ) ) v e. ran F ) ) |
| 47 |
46
|
rexlimdva |
|- ( ph -> ( E. t e. On ( F ` t ) = s -> A. v e. ( R1 ` ( rank ` s ) ) v e. ran F ) ) |
| 48 |
11 47
|
biimtrid |
|- ( ph -> ( s e. ran F -> A. v e. ( R1 ` ( rank ` s ) ) v e. ran F ) ) |
| 49 |
48
|
imp |
|- ( ( ph /\ s e. ran F ) -> A. v e. ( R1 ` ( rank ` s ) ) v e. ran F ) |
| 50 |
|
df-ral |
|- ( A. v e. ( R1 ` ( rank ` s ) ) v e. ran F <-> A. v ( v e. ( R1 ` ( rank ` s ) ) -> v e. ran F ) ) |
| 51 |
49 50
|
sylib |
|- ( ( ph /\ s e. ran F ) -> A. v ( v e. ( R1 ` ( rank ` s ) ) -> v e. ran F ) ) |
| 52 |
51
|
19.21bi |
|- ( ( ph /\ s e. ran F ) -> ( v e. ( R1 ` ( rank ` s ) ) -> v e. ran F ) ) |
| 53 |
52
|
con3d |
|- ( ( ph /\ s e. ran F ) -> ( -. v e. ran F -> -. v e. ( R1 ` ( rank ` s ) ) ) ) |
| 54 |
|
rankon |
|- ( rank ` s ) e. On |
| 55 |
|
vex |
|- v e. _V |
| 56 |
55
|
ssrankr1 |
|- ( ( rank ` s ) e. On -> ( ( rank ` s ) C_ ( rank ` v ) <-> -. v e. ( R1 ` ( rank ` s ) ) ) ) |
| 57 |
54 56
|
ax-mp |
|- ( ( rank ` s ) C_ ( rank ` v ) <-> -. v e. ( R1 ` ( rank ` s ) ) ) |
| 58 |
53 57
|
imbitrrdi |
|- ( ( ph /\ s e. ran F ) -> ( -. v e. ran F -> ( rank ` s ) C_ ( rank ` v ) ) ) |
| 59 |
58
|
impancom |
|- ( ( ph /\ -. v e. ran F ) -> ( s e. ran F -> ( rank ` s ) C_ ( rank ` v ) ) ) |
| 60 |
59
|
ralrimiv |
|- ( ( ph /\ -. v e. ran F ) -> A. s e. ran F ( rank ` s ) C_ ( rank ` v ) ) |
| 61 |
|
rankon |
|- ( rank ` v ) e. On |
| 62 |
|
sseq2 |
|- ( r = ( rank ` v ) -> ( ( rank ` s ) C_ r <-> ( rank ` s ) C_ ( rank ` v ) ) ) |
| 63 |
62
|
ralbidv |
|- ( r = ( rank ` v ) -> ( A. s e. ran F ( rank ` s ) C_ r <-> A. s e. ran F ( rank ` s ) C_ ( rank ` v ) ) ) |
| 64 |
63
|
rspcev |
|- ( ( ( rank ` v ) e. On /\ A. s e. ran F ( rank ` s ) C_ ( rank ` v ) ) -> E. r e. On A. s e. ran F ( rank ` s ) C_ r ) |
| 65 |
61 64
|
mpan |
|- ( A. s e. ran F ( rank ` s ) C_ ( rank ` v ) -> E. r e. On A. s e. ran F ( rank ` s ) C_ r ) |
| 66 |
|
bndrank |
|- ( E. r e. On A. s e. ran F ( rank ` s ) C_ r -> ran F e. _V ) |
| 67 |
60 65 66
|
3syl |
|- ( ( ph /\ -. v e. ran F ) -> ran F e. _V ) |
| 68 |
67
|
expcom |
|- ( -. v e. ran F -> ( ph -> ran F e. _V ) ) |
| 69 |
68
|
exlimiv |
|- ( E. v -. v e. ran F -> ( ph -> ran F e. _V ) ) |
| 70 |
8 69
|
sylbir |
|- ( -. A. v v e. ran F -> ( ph -> ran F e. _V ) ) |
| 71 |
7 70
|
sylnbi |
|- ( -. ran F = _V -> ( ph -> ran F e. _V ) ) |
| 72 |
71
|
com12 |
|- ( ph -> ( -. ran F = _V -> ran F e. _V ) ) |
| 73 |
72
|
con1d |
|- ( ph -> ( -. ran F e. _V -> ran F = _V ) ) |