| Step |
Hyp |
Ref |
Expression |
| 1 |
|
onvf1od.1 |
|- ( ph -> A. z ( z =/= (/) -> ( G ` z ) e. z ) ) |
| 2 |
|
onvf1od.2 |
|- M = |^| { x e. On | E. y e. ( R1 ` x ) -. y e. ran w } |
| 3 |
|
onvf1od.3 |
|- N = ( G ` ( ( R1 ` M ) \ ran w ) ) |
| 4 |
|
onvf1od.4 |
|- F = recs ( ( w e. _V |-> N ) ) |
| 5 |
4
|
tfr1 |
|- F Fn On |
| 6 |
|
dffn2 |
|- ( F Fn On <-> F : On --> _V ) |
| 7 |
5 6
|
mpbi |
|- F : On --> _V |
| 8 |
|
eqid |
|- |^| { u e. On | E. v e. ( R1 ` u ) -. v e. ( F " t ) } = |^| { u e. On | E. v e. ( R1 ` u ) -. v e. ( F " t ) } |
| 9 |
|
eqid |
|- ( G ` ( ( R1 ` |^| { u e. On | E. v e. ( R1 ` u ) -. v e. ( F " t ) } ) \ ( F " t ) ) ) = ( G ` ( ( R1 ` |^| { u e. On | E. v e. ( R1 ` u ) -. v e. ( F " t ) } ) \ ( F " t ) ) ) |
| 10 |
2 3 4 8 9
|
onvf1odlem3 |
|- ( t e. On -> ( F ` t ) = ( G ` ( ( R1 ` |^| { u e. On | E. v e. ( R1 ` u ) -. v e. ( F " t ) } ) \ ( F " t ) ) ) ) |
| 11 |
10
|
adantl |
|- ( ( ph /\ t e. On ) -> ( F ` t ) = ( G ` ( ( R1 ` |^| { u e. On | E. v e. ( R1 ` u ) -. v e. ( F " t ) } ) \ ( F " t ) ) ) ) |
| 12 |
|
fnfun |
|- ( F Fn On -> Fun F ) |
| 13 |
|
vex |
|- t e. _V |
| 14 |
13
|
funimaex |
|- ( Fun F -> ( F " t ) e. _V ) |
| 15 |
5 12 14
|
mp2b |
|- ( F " t ) e. _V |
| 16 |
1 8 9
|
onvf1odlem2 |
|- ( ph -> ( ( F " t ) e. _V -> ( G ` ( ( R1 ` |^| { u e. On | E. v e. ( R1 ` u ) -. v e. ( F " t ) } ) \ ( F " t ) ) ) e. ( ( R1 ` |^| { u e. On | E. v e. ( R1 ` u ) -. v e. ( F " t ) } ) \ ( F " t ) ) ) ) |
| 17 |
15 16
|
mpi |
|- ( ph -> ( G ` ( ( R1 ` |^| { u e. On | E. v e. ( R1 ` u ) -. v e. ( F " t ) } ) \ ( F " t ) ) ) e. ( ( R1 ` |^| { u e. On | E. v e. ( R1 ` u ) -. v e. ( F " t ) } ) \ ( F " t ) ) ) |
| 18 |
17
|
eldifbd |
|- ( ph -> -. ( G ` ( ( R1 ` |^| { u e. On | E. v e. ( R1 ` u ) -. v e. ( F " t ) } ) \ ( F " t ) ) ) e. ( F " t ) ) |
| 19 |
18
|
adantr |
|- ( ( ph /\ t e. On ) -> -. ( G ` ( ( R1 ` |^| { u e. On | E. v e. ( R1 ` u ) -. v e. ( F " t ) } ) \ ( F " t ) ) ) e. ( F " t ) ) |
| 20 |
11 19
|
eqneltrd |
|- ( ( ph /\ t e. On ) -> -. ( F ` t ) e. ( F " t ) ) |
| 21 |
20
|
ralrimiva |
|- ( ph -> A. t e. On -. ( F ` t ) e. ( F " t ) ) |
| 22 |
|
fvex |
|- ( F ` t ) e. _V |
| 23 |
|
eldif |
|- ( ( F ` t ) e. ( _V \ ( F " t ) ) <-> ( ( F ` t ) e. _V /\ -. ( F ` t ) e. ( F " t ) ) ) |
| 24 |
22 23
|
mpbiran |
|- ( ( F ` t ) e. ( _V \ ( F " t ) ) <-> -. ( F ` t ) e. ( F " t ) ) |
| 25 |
24
|
ralbii |
|- ( A. t e. On ( F ` t ) e. ( _V \ ( F " t ) ) <-> A. t e. On -. ( F ` t ) e. ( F " t ) ) |
| 26 |
5
|
tz7.48-2 |
|- ( A. t e. On ( F ` t ) e. ( _V \ ( F " t ) ) -> Fun `' F ) |
| 27 |
25 26
|
sylbir |
|- ( A. t e. On -. ( F ` t ) e. ( F " t ) -> Fun `' F ) |
| 28 |
21 27
|
syl |
|- ( ph -> Fun `' F ) |
| 29 |
|
df-f1 |
|- ( F : On -1-1-> _V <-> ( F : On --> _V /\ Fun `' F ) ) |
| 30 |
29
|
biimpri |
|- ( ( F : On --> _V /\ Fun `' F ) -> F : On -1-1-> _V ) |
| 31 |
7 28 30
|
sylancr |
|- ( ph -> F : On -1-1-> _V ) |
| 32 |
|
onprc |
|- -. On e. _V |
| 33 |
|
f1f1orn |
|- ( F : On -1-1-> _V -> F : On -1-1-onto-> ran F ) |
| 34 |
|
f1of1 |
|- ( F : On -1-1-onto-> ran F -> F : On -1-1-> ran F ) |
| 35 |
31 33 34
|
3syl |
|- ( ph -> F : On -1-1-> ran F ) |
| 36 |
|
f1dmex |
|- ( ( F : On -1-1-> ran F /\ ran F e. _V ) -> On e. _V ) |
| 37 |
35 36
|
sylan |
|- ( ( ph /\ ran F e. _V ) -> On e. _V ) |
| 38 |
37
|
stoic1a |
|- ( ( ph /\ -. On e. _V ) -> -. ran F e. _V ) |
| 39 |
32 38
|
mpan2 |
|- ( ph -> -. ran F e. _V ) |
| 40 |
1 2 3 4 8 9
|
onvf1odlem4 |
|- ( ph -> ( -. ran F e. _V -> ran F = _V ) ) |
| 41 |
39 40
|
mpd |
|- ( ph -> ran F = _V ) |
| 42 |
|
dff1o5 |
|- ( F : On -1-1-onto-> _V <-> ( F : On -1-1-> _V /\ ran F = _V ) ) |
| 43 |
31 41 42
|
sylanbrc |
|- ( ph -> F : On -1-1-onto-> _V ) |