| Step |
Hyp |
Ref |
Expression |
| 1 |
|
onvf1odlem3.1 |
|- M = |^| { x e. On | E. y e. ( R1 ` x ) -. y e. ran w } |
| 2 |
|
onvf1odlem3.2 |
|- N = ( G ` ( ( R1 ` M ) \ ran w ) ) |
| 3 |
|
onvf1odlem3.3 |
|- F = recs ( ( w e. _V |-> N ) ) |
| 4 |
|
onvf1odlem3.4 |
|- B = |^| { u e. On | E. v e. ( R1 ` u ) -. v e. ( F " A ) } |
| 5 |
|
onvf1odlem3.5 |
|- C = ( G ` ( ( R1 ` B ) \ ( F " A ) ) ) |
| 6 |
3
|
tfr2 |
|- ( A e. On -> ( F ` A ) = ( ( w e. _V |-> N ) ` ( F |` A ) ) ) |
| 7 |
3
|
tfr1 |
|- F Fn On |
| 8 |
|
fnfun |
|- ( F Fn On -> Fun F ) |
| 9 |
7 8
|
ax-mp |
|- Fun F |
| 10 |
|
resfunexg |
|- ( ( Fun F /\ A e. On ) -> ( F |` A ) e. _V ) |
| 11 |
9 10
|
mpan |
|- ( A e. On -> ( F |` A ) e. _V ) |
| 12 |
|
eleq1w |
|- ( t = v -> ( t e. ran r <-> v e. ran r ) ) |
| 13 |
12
|
notbid |
|- ( t = v -> ( -. t e. ran r <-> -. v e. ran r ) ) |
| 14 |
13
|
adantl |
|- ( ( s = u /\ t = v ) -> ( -. t e. ran r <-> -. v e. ran r ) ) |
| 15 |
|
fveq2 |
|- ( s = u -> ( R1 ` s ) = ( R1 ` u ) ) |
| 16 |
15
|
adantr |
|- ( ( s = u /\ t = v ) -> ( R1 ` s ) = ( R1 ` u ) ) |
| 17 |
14 16
|
cbvrexdva2 |
|- ( s = u -> ( E. t e. ( R1 ` s ) -. t e. ran r <-> E. v e. ( R1 ` u ) -. v e. ran r ) ) |
| 18 |
17
|
cbvrabv |
|- { s e. On | E. t e. ( R1 ` s ) -. t e. ran r } = { u e. On | E. v e. ( R1 ` u ) -. v e. ran r } |
| 19 |
|
rneq |
|- ( r = ( F |` A ) -> ran r = ran ( F |` A ) ) |
| 20 |
|
df-ima |
|- ( F " A ) = ran ( F |` A ) |
| 21 |
19 20
|
eqtr4di |
|- ( r = ( F |` A ) -> ran r = ( F " A ) ) |
| 22 |
21
|
eleq2d |
|- ( r = ( F |` A ) -> ( v e. ran r <-> v e. ( F " A ) ) ) |
| 23 |
22
|
notbid |
|- ( r = ( F |` A ) -> ( -. v e. ran r <-> -. v e. ( F " A ) ) ) |
| 24 |
23
|
rexbidv |
|- ( r = ( F |` A ) -> ( E. v e. ( R1 ` u ) -. v e. ran r <-> E. v e. ( R1 ` u ) -. v e. ( F " A ) ) ) |
| 25 |
24
|
rabbidv |
|- ( r = ( F |` A ) -> { u e. On | E. v e. ( R1 ` u ) -. v e. ran r } = { u e. On | E. v e. ( R1 ` u ) -. v e. ( F " A ) } ) |
| 26 |
18 25
|
eqtrid |
|- ( r = ( F |` A ) -> { s e. On | E. t e. ( R1 ` s ) -. t e. ran r } = { u e. On | E. v e. ( R1 ` u ) -. v e. ( F " A ) } ) |
| 27 |
26
|
inteqd |
|- ( r = ( F |` A ) -> |^| { s e. On | E. t e. ( R1 ` s ) -. t e. ran r } = |^| { u e. On | E. v e. ( R1 ` u ) -. v e. ( F " A ) } ) |
| 28 |
27 4
|
eqtr4di |
|- ( r = ( F |` A ) -> |^| { s e. On | E. t e. ( R1 ` s ) -. t e. ran r } = B ) |
| 29 |
28
|
fveq2d |
|- ( r = ( F |` A ) -> ( R1 ` |^| { s e. On | E. t e. ( R1 ` s ) -. t e. ran r } ) = ( R1 ` B ) ) |
| 30 |
29 21
|
difeq12d |
|- ( r = ( F |` A ) -> ( ( R1 ` |^| { s e. On | E. t e. ( R1 ` s ) -. t e. ran r } ) \ ran r ) = ( ( R1 ` B ) \ ( F " A ) ) ) |
| 31 |
30
|
fveq2d |
|- ( r = ( F |` A ) -> ( G ` ( ( R1 ` |^| { s e. On | E. t e. ( R1 ` s ) -. t e. ran r } ) \ ran r ) ) = ( G ` ( ( R1 ` B ) \ ( F " A ) ) ) ) |
| 32 |
31 5
|
eqtr4di |
|- ( r = ( F |` A ) -> ( G ` ( ( R1 ` |^| { s e. On | E. t e. ( R1 ` s ) -. t e. ran r } ) \ ran r ) ) = C ) |
| 33 |
|
eleq1w |
|- ( y = t -> ( y e. ran w <-> t e. ran w ) ) |
| 34 |
33
|
notbid |
|- ( y = t -> ( -. y e. ran w <-> -. t e. ran w ) ) |
| 35 |
34
|
adantl |
|- ( ( x = s /\ y = t ) -> ( -. y e. ran w <-> -. t e. ran w ) ) |
| 36 |
|
fveq2 |
|- ( x = s -> ( R1 ` x ) = ( R1 ` s ) ) |
| 37 |
36
|
adantr |
|- ( ( x = s /\ y = t ) -> ( R1 ` x ) = ( R1 ` s ) ) |
| 38 |
35 37
|
cbvrexdva2 |
|- ( x = s -> ( E. y e. ( R1 ` x ) -. y e. ran w <-> E. t e. ( R1 ` s ) -. t e. ran w ) ) |
| 39 |
38
|
cbvrabv |
|- { x e. On | E. y e. ( R1 ` x ) -. y e. ran w } = { s e. On | E. t e. ( R1 ` s ) -. t e. ran w } |
| 40 |
|
rneq |
|- ( w = r -> ran w = ran r ) |
| 41 |
40
|
eleq2d |
|- ( w = r -> ( t e. ran w <-> t e. ran r ) ) |
| 42 |
41
|
notbid |
|- ( w = r -> ( -. t e. ran w <-> -. t e. ran r ) ) |
| 43 |
42
|
rexbidv |
|- ( w = r -> ( E. t e. ( R1 ` s ) -. t e. ran w <-> E. t e. ( R1 ` s ) -. t e. ran r ) ) |
| 44 |
43
|
rabbidv |
|- ( w = r -> { s e. On | E. t e. ( R1 ` s ) -. t e. ran w } = { s e. On | E. t e. ( R1 ` s ) -. t e. ran r } ) |
| 45 |
39 44
|
eqtrid |
|- ( w = r -> { x e. On | E. y e. ( R1 ` x ) -. y e. ran w } = { s e. On | E. t e. ( R1 ` s ) -. t e. ran r } ) |
| 46 |
45
|
inteqd |
|- ( w = r -> |^| { x e. On | E. y e. ( R1 ` x ) -. y e. ran w } = |^| { s e. On | E. t e. ( R1 ` s ) -. t e. ran r } ) |
| 47 |
1 46
|
eqtrid |
|- ( w = r -> M = |^| { s e. On | E. t e. ( R1 ` s ) -. t e. ran r } ) |
| 48 |
47
|
fveq2d |
|- ( w = r -> ( R1 ` M ) = ( R1 ` |^| { s e. On | E. t e. ( R1 ` s ) -. t e. ran r } ) ) |
| 49 |
48 40
|
difeq12d |
|- ( w = r -> ( ( R1 ` M ) \ ran w ) = ( ( R1 ` |^| { s e. On | E. t e. ( R1 ` s ) -. t e. ran r } ) \ ran r ) ) |
| 50 |
49
|
fveq2d |
|- ( w = r -> ( G ` ( ( R1 ` M ) \ ran w ) ) = ( G ` ( ( R1 ` |^| { s e. On | E. t e. ( R1 ` s ) -. t e. ran r } ) \ ran r ) ) ) |
| 51 |
2 50
|
eqtrid |
|- ( w = r -> N = ( G ` ( ( R1 ` |^| { s e. On | E. t e. ( R1 ` s ) -. t e. ran r } ) \ ran r ) ) ) |
| 52 |
51
|
cbvmptv |
|- ( w e. _V |-> N ) = ( r e. _V |-> ( G ` ( ( R1 ` |^| { s e. On | E. t e. ( R1 ` s ) -. t e. ran r } ) \ ran r ) ) ) |
| 53 |
5
|
fvexi |
|- C e. _V |
| 54 |
32 52 53
|
fvmpt |
|- ( ( F |` A ) e. _V -> ( ( w e. _V |-> N ) ` ( F |` A ) ) = C ) |
| 55 |
11 54
|
syl |
|- ( A e. On -> ( ( w e. _V |-> N ) ` ( F |` A ) ) = C ) |
| 56 |
6 55
|
eqtrd |
|- ( A e. On -> ( F ` A ) = C ) |