Metamath Proof Explorer


Theorem onvf1odlem3

Description: Lemma for onvf1od . The value of F at an ordinal A . (Contributed by BTernaryTau, 2-Dec-2025)

Ref Expression
Hypotheses onvf1odlem3.1 𝑀 = { 𝑥 ∈ On ∣ ∃ 𝑦 ∈ ( 𝑅1𝑥 ) ¬ 𝑦 ∈ ran 𝑤 }
onvf1odlem3.2 𝑁 = ( 𝐺 ‘ ( ( 𝑅1𝑀 ) ∖ ran 𝑤 ) )
onvf1odlem3.3 𝐹 = recs ( ( 𝑤 ∈ V ↦ 𝑁 ) )
onvf1odlem3.4 𝐵 = { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1𝑢 ) ¬ 𝑣 ∈ ( 𝐹𝐴 ) }
onvf1odlem3.5 𝐶 = ( 𝐺 ‘ ( ( 𝑅1𝐵 ) ∖ ( 𝐹𝐴 ) ) )
Assertion onvf1odlem3 ( 𝐴 ∈ On → ( 𝐹𝐴 ) = 𝐶 )

Proof

Step Hyp Ref Expression
1 onvf1odlem3.1 𝑀 = { 𝑥 ∈ On ∣ ∃ 𝑦 ∈ ( 𝑅1𝑥 ) ¬ 𝑦 ∈ ran 𝑤 }
2 onvf1odlem3.2 𝑁 = ( 𝐺 ‘ ( ( 𝑅1𝑀 ) ∖ ran 𝑤 ) )
3 onvf1odlem3.3 𝐹 = recs ( ( 𝑤 ∈ V ↦ 𝑁 ) )
4 onvf1odlem3.4 𝐵 = { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1𝑢 ) ¬ 𝑣 ∈ ( 𝐹𝐴 ) }
5 onvf1odlem3.5 𝐶 = ( 𝐺 ‘ ( ( 𝑅1𝐵 ) ∖ ( 𝐹𝐴 ) ) )
6 3 tfr2 ( 𝐴 ∈ On → ( 𝐹𝐴 ) = ( ( 𝑤 ∈ V ↦ 𝑁 ) ‘ ( 𝐹𝐴 ) ) )
7 3 tfr1 𝐹 Fn On
8 fnfun ( 𝐹 Fn On → Fun 𝐹 )
9 7 8 ax-mp Fun 𝐹
10 resfunexg ( ( Fun 𝐹𝐴 ∈ On ) → ( 𝐹𝐴 ) ∈ V )
11 9 10 mpan ( 𝐴 ∈ On → ( 𝐹𝐴 ) ∈ V )
12 eleq1w ( 𝑡 = 𝑣 → ( 𝑡 ∈ ran 𝑟𝑣 ∈ ran 𝑟 ) )
13 12 notbid ( 𝑡 = 𝑣 → ( ¬ 𝑡 ∈ ran 𝑟 ↔ ¬ 𝑣 ∈ ran 𝑟 ) )
14 13 adantl ( ( 𝑠 = 𝑢𝑡 = 𝑣 ) → ( ¬ 𝑡 ∈ ran 𝑟 ↔ ¬ 𝑣 ∈ ran 𝑟 ) )
15 fveq2 ( 𝑠 = 𝑢 → ( 𝑅1𝑠 ) = ( 𝑅1𝑢 ) )
16 15 adantr ( ( 𝑠 = 𝑢𝑡 = 𝑣 ) → ( 𝑅1𝑠 ) = ( 𝑅1𝑢 ) )
17 14 16 cbvrexdva2 ( 𝑠 = 𝑢 → ( ∃ 𝑡 ∈ ( 𝑅1𝑠 ) ¬ 𝑡 ∈ ran 𝑟 ↔ ∃ 𝑣 ∈ ( 𝑅1𝑢 ) ¬ 𝑣 ∈ ran 𝑟 ) )
18 17 cbvrabv { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1𝑠 ) ¬ 𝑡 ∈ ran 𝑟 } = { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1𝑢 ) ¬ 𝑣 ∈ ran 𝑟 }
19 rneq ( 𝑟 = ( 𝐹𝐴 ) → ran 𝑟 = ran ( 𝐹𝐴 ) )
20 df-ima ( 𝐹𝐴 ) = ran ( 𝐹𝐴 )
21 19 20 eqtr4di ( 𝑟 = ( 𝐹𝐴 ) → ran 𝑟 = ( 𝐹𝐴 ) )
22 21 eleq2d ( 𝑟 = ( 𝐹𝐴 ) → ( 𝑣 ∈ ran 𝑟𝑣 ∈ ( 𝐹𝐴 ) ) )
23 22 notbid ( 𝑟 = ( 𝐹𝐴 ) → ( ¬ 𝑣 ∈ ran 𝑟 ↔ ¬ 𝑣 ∈ ( 𝐹𝐴 ) ) )
24 23 rexbidv ( 𝑟 = ( 𝐹𝐴 ) → ( ∃ 𝑣 ∈ ( 𝑅1𝑢 ) ¬ 𝑣 ∈ ran 𝑟 ↔ ∃ 𝑣 ∈ ( 𝑅1𝑢 ) ¬ 𝑣 ∈ ( 𝐹𝐴 ) ) )
25 24 rabbidv ( 𝑟 = ( 𝐹𝐴 ) → { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1𝑢 ) ¬ 𝑣 ∈ ran 𝑟 } = { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1𝑢 ) ¬ 𝑣 ∈ ( 𝐹𝐴 ) } )
26 18 25 eqtrid ( 𝑟 = ( 𝐹𝐴 ) → { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1𝑠 ) ¬ 𝑡 ∈ ran 𝑟 } = { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1𝑢 ) ¬ 𝑣 ∈ ( 𝐹𝐴 ) } )
27 26 inteqd ( 𝑟 = ( 𝐹𝐴 ) → { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1𝑠 ) ¬ 𝑡 ∈ ran 𝑟 } = { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1𝑢 ) ¬ 𝑣 ∈ ( 𝐹𝐴 ) } )
28 27 4 eqtr4di ( 𝑟 = ( 𝐹𝐴 ) → { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1𝑠 ) ¬ 𝑡 ∈ ran 𝑟 } = 𝐵 )
29 28 fveq2d ( 𝑟 = ( 𝐹𝐴 ) → ( 𝑅1 { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1𝑠 ) ¬ 𝑡 ∈ ran 𝑟 } ) = ( 𝑅1𝐵 ) )
30 29 21 difeq12d ( 𝑟 = ( 𝐹𝐴 ) → ( ( 𝑅1 { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1𝑠 ) ¬ 𝑡 ∈ ran 𝑟 } ) ∖ ran 𝑟 ) = ( ( 𝑅1𝐵 ) ∖ ( 𝐹𝐴 ) ) )
31 30 fveq2d ( 𝑟 = ( 𝐹𝐴 ) → ( 𝐺 ‘ ( ( 𝑅1 { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1𝑠 ) ¬ 𝑡 ∈ ran 𝑟 } ) ∖ ran 𝑟 ) ) = ( 𝐺 ‘ ( ( 𝑅1𝐵 ) ∖ ( 𝐹𝐴 ) ) ) )
32 31 5 eqtr4di ( 𝑟 = ( 𝐹𝐴 ) → ( 𝐺 ‘ ( ( 𝑅1 { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1𝑠 ) ¬ 𝑡 ∈ ran 𝑟 } ) ∖ ran 𝑟 ) ) = 𝐶 )
33 eleq1w ( 𝑦 = 𝑡 → ( 𝑦 ∈ ran 𝑤𝑡 ∈ ran 𝑤 ) )
34 33 notbid ( 𝑦 = 𝑡 → ( ¬ 𝑦 ∈ ran 𝑤 ↔ ¬ 𝑡 ∈ ran 𝑤 ) )
35 34 adantl ( ( 𝑥 = 𝑠𝑦 = 𝑡 ) → ( ¬ 𝑦 ∈ ran 𝑤 ↔ ¬ 𝑡 ∈ ran 𝑤 ) )
36 fveq2 ( 𝑥 = 𝑠 → ( 𝑅1𝑥 ) = ( 𝑅1𝑠 ) )
37 36 adantr ( ( 𝑥 = 𝑠𝑦 = 𝑡 ) → ( 𝑅1𝑥 ) = ( 𝑅1𝑠 ) )
38 35 37 cbvrexdva2 ( 𝑥 = 𝑠 → ( ∃ 𝑦 ∈ ( 𝑅1𝑥 ) ¬ 𝑦 ∈ ran 𝑤 ↔ ∃ 𝑡 ∈ ( 𝑅1𝑠 ) ¬ 𝑡 ∈ ran 𝑤 ) )
39 38 cbvrabv { 𝑥 ∈ On ∣ ∃ 𝑦 ∈ ( 𝑅1𝑥 ) ¬ 𝑦 ∈ ran 𝑤 } = { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1𝑠 ) ¬ 𝑡 ∈ ran 𝑤 }
40 rneq ( 𝑤 = 𝑟 → ran 𝑤 = ran 𝑟 )
41 40 eleq2d ( 𝑤 = 𝑟 → ( 𝑡 ∈ ran 𝑤𝑡 ∈ ran 𝑟 ) )
42 41 notbid ( 𝑤 = 𝑟 → ( ¬ 𝑡 ∈ ran 𝑤 ↔ ¬ 𝑡 ∈ ran 𝑟 ) )
43 42 rexbidv ( 𝑤 = 𝑟 → ( ∃ 𝑡 ∈ ( 𝑅1𝑠 ) ¬ 𝑡 ∈ ran 𝑤 ↔ ∃ 𝑡 ∈ ( 𝑅1𝑠 ) ¬ 𝑡 ∈ ran 𝑟 ) )
44 43 rabbidv ( 𝑤 = 𝑟 → { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1𝑠 ) ¬ 𝑡 ∈ ran 𝑤 } = { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1𝑠 ) ¬ 𝑡 ∈ ran 𝑟 } )
45 39 44 eqtrid ( 𝑤 = 𝑟 → { 𝑥 ∈ On ∣ ∃ 𝑦 ∈ ( 𝑅1𝑥 ) ¬ 𝑦 ∈ ran 𝑤 } = { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1𝑠 ) ¬ 𝑡 ∈ ran 𝑟 } )
46 45 inteqd ( 𝑤 = 𝑟 { 𝑥 ∈ On ∣ ∃ 𝑦 ∈ ( 𝑅1𝑥 ) ¬ 𝑦 ∈ ran 𝑤 } = { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1𝑠 ) ¬ 𝑡 ∈ ran 𝑟 } )
47 1 46 eqtrid ( 𝑤 = 𝑟𝑀 = { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1𝑠 ) ¬ 𝑡 ∈ ran 𝑟 } )
48 47 fveq2d ( 𝑤 = 𝑟 → ( 𝑅1𝑀 ) = ( 𝑅1 { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1𝑠 ) ¬ 𝑡 ∈ ran 𝑟 } ) )
49 48 40 difeq12d ( 𝑤 = 𝑟 → ( ( 𝑅1𝑀 ) ∖ ran 𝑤 ) = ( ( 𝑅1 { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1𝑠 ) ¬ 𝑡 ∈ ran 𝑟 } ) ∖ ran 𝑟 ) )
50 49 fveq2d ( 𝑤 = 𝑟 → ( 𝐺 ‘ ( ( 𝑅1𝑀 ) ∖ ran 𝑤 ) ) = ( 𝐺 ‘ ( ( 𝑅1 { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1𝑠 ) ¬ 𝑡 ∈ ran 𝑟 } ) ∖ ran 𝑟 ) ) )
51 2 50 eqtrid ( 𝑤 = 𝑟𝑁 = ( 𝐺 ‘ ( ( 𝑅1 { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1𝑠 ) ¬ 𝑡 ∈ ran 𝑟 } ) ∖ ran 𝑟 ) ) )
52 51 cbvmptv ( 𝑤 ∈ V ↦ 𝑁 ) = ( 𝑟 ∈ V ↦ ( 𝐺 ‘ ( ( 𝑅1 { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1𝑠 ) ¬ 𝑡 ∈ ran 𝑟 } ) ∖ ran 𝑟 ) ) )
53 5 fvexi 𝐶 ∈ V
54 32 52 53 fvmpt ( ( 𝐹𝐴 ) ∈ V → ( ( 𝑤 ∈ V ↦ 𝑁 ) ‘ ( 𝐹𝐴 ) ) = 𝐶 )
55 11 54 syl ( 𝐴 ∈ On → ( ( 𝑤 ∈ V ↦ 𝑁 ) ‘ ( 𝐹𝐴 ) ) = 𝐶 )
56 6 55 eqtrd ( 𝐴 ∈ On → ( 𝐹𝐴 ) = 𝐶 )