| Step |
Hyp |
Ref |
Expression |
| 1 |
|
onvf1odlem3.1 |
⊢ 𝑀 = ∩ { 𝑥 ∈ On ∣ ∃ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ¬ 𝑦 ∈ ran 𝑤 } |
| 2 |
|
onvf1odlem3.2 |
⊢ 𝑁 = ( 𝐺 ‘ ( ( 𝑅1 ‘ 𝑀 ) ∖ ran 𝑤 ) ) |
| 3 |
|
onvf1odlem3.3 |
⊢ 𝐹 = recs ( ( 𝑤 ∈ V ↦ 𝑁 ) ) |
| 4 |
|
onvf1odlem3.4 |
⊢ 𝐵 = ∩ { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1 ‘ 𝑢 ) ¬ 𝑣 ∈ ( 𝐹 “ 𝐴 ) } |
| 5 |
|
onvf1odlem3.5 |
⊢ 𝐶 = ( 𝐺 ‘ ( ( 𝑅1 ‘ 𝐵 ) ∖ ( 𝐹 “ 𝐴 ) ) ) |
| 6 |
3
|
tfr2 |
⊢ ( 𝐴 ∈ On → ( 𝐹 ‘ 𝐴 ) = ( ( 𝑤 ∈ V ↦ 𝑁 ) ‘ ( 𝐹 ↾ 𝐴 ) ) ) |
| 7 |
3
|
tfr1 |
⊢ 𝐹 Fn On |
| 8 |
|
fnfun |
⊢ ( 𝐹 Fn On → Fun 𝐹 ) |
| 9 |
7 8
|
ax-mp |
⊢ Fun 𝐹 |
| 10 |
|
resfunexg |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ On ) → ( 𝐹 ↾ 𝐴 ) ∈ V ) |
| 11 |
9 10
|
mpan |
⊢ ( 𝐴 ∈ On → ( 𝐹 ↾ 𝐴 ) ∈ V ) |
| 12 |
|
eleq1w |
⊢ ( 𝑡 = 𝑣 → ( 𝑡 ∈ ran 𝑟 ↔ 𝑣 ∈ ran 𝑟 ) ) |
| 13 |
12
|
notbid |
⊢ ( 𝑡 = 𝑣 → ( ¬ 𝑡 ∈ ran 𝑟 ↔ ¬ 𝑣 ∈ ran 𝑟 ) ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝑠 = 𝑢 ∧ 𝑡 = 𝑣 ) → ( ¬ 𝑡 ∈ ran 𝑟 ↔ ¬ 𝑣 ∈ ran 𝑟 ) ) |
| 15 |
|
fveq2 |
⊢ ( 𝑠 = 𝑢 → ( 𝑅1 ‘ 𝑠 ) = ( 𝑅1 ‘ 𝑢 ) ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝑠 = 𝑢 ∧ 𝑡 = 𝑣 ) → ( 𝑅1 ‘ 𝑠 ) = ( 𝑅1 ‘ 𝑢 ) ) |
| 17 |
14 16
|
cbvrexdva2 |
⊢ ( 𝑠 = 𝑢 → ( ∃ 𝑡 ∈ ( 𝑅1 ‘ 𝑠 ) ¬ 𝑡 ∈ ran 𝑟 ↔ ∃ 𝑣 ∈ ( 𝑅1 ‘ 𝑢 ) ¬ 𝑣 ∈ ran 𝑟 ) ) |
| 18 |
17
|
cbvrabv |
⊢ { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1 ‘ 𝑠 ) ¬ 𝑡 ∈ ran 𝑟 } = { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1 ‘ 𝑢 ) ¬ 𝑣 ∈ ran 𝑟 } |
| 19 |
|
rneq |
⊢ ( 𝑟 = ( 𝐹 ↾ 𝐴 ) → ran 𝑟 = ran ( 𝐹 ↾ 𝐴 ) ) |
| 20 |
|
df-ima |
⊢ ( 𝐹 “ 𝐴 ) = ran ( 𝐹 ↾ 𝐴 ) |
| 21 |
19 20
|
eqtr4di |
⊢ ( 𝑟 = ( 𝐹 ↾ 𝐴 ) → ran 𝑟 = ( 𝐹 “ 𝐴 ) ) |
| 22 |
21
|
eleq2d |
⊢ ( 𝑟 = ( 𝐹 ↾ 𝐴 ) → ( 𝑣 ∈ ran 𝑟 ↔ 𝑣 ∈ ( 𝐹 “ 𝐴 ) ) ) |
| 23 |
22
|
notbid |
⊢ ( 𝑟 = ( 𝐹 ↾ 𝐴 ) → ( ¬ 𝑣 ∈ ran 𝑟 ↔ ¬ 𝑣 ∈ ( 𝐹 “ 𝐴 ) ) ) |
| 24 |
23
|
rexbidv |
⊢ ( 𝑟 = ( 𝐹 ↾ 𝐴 ) → ( ∃ 𝑣 ∈ ( 𝑅1 ‘ 𝑢 ) ¬ 𝑣 ∈ ran 𝑟 ↔ ∃ 𝑣 ∈ ( 𝑅1 ‘ 𝑢 ) ¬ 𝑣 ∈ ( 𝐹 “ 𝐴 ) ) ) |
| 25 |
24
|
rabbidv |
⊢ ( 𝑟 = ( 𝐹 ↾ 𝐴 ) → { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1 ‘ 𝑢 ) ¬ 𝑣 ∈ ran 𝑟 } = { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1 ‘ 𝑢 ) ¬ 𝑣 ∈ ( 𝐹 “ 𝐴 ) } ) |
| 26 |
18 25
|
eqtrid |
⊢ ( 𝑟 = ( 𝐹 ↾ 𝐴 ) → { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1 ‘ 𝑠 ) ¬ 𝑡 ∈ ran 𝑟 } = { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1 ‘ 𝑢 ) ¬ 𝑣 ∈ ( 𝐹 “ 𝐴 ) } ) |
| 27 |
26
|
inteqd |
⊢ ( 𝑟 = ( 𝐹 ↾ 𝐴 ) → ∩ { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1 ‘ 𝑠 ) ¬ 𝑡 ∈ ran 𝑟 } = ∩ { 𝑢 ∈ On ∣ ∃ 𝑣 ∈ ( 𝑅1 ‘ 𝑢 ) ¬ 𝑣 ∈ ( 𝐹 “ 𝐴 ) } ) |
| 28 |
27 4
|
eqtr4di |
⊢ ( 𝑟 = ( 𝐹 ↾ 𝐴 ) → ∩ { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1 ‘ 𝑠 ) ¬ 𝑡 ∈ ran 𝑟 } = 𝐵 ) |
| 29 |
28
|
fveq2d |
⊢ ( 𝑟 = ( 𝐹 ↾ 𝐴 ) → ( 𝑅1 ‘ ∩ { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1 ‘ 𝑠 ) ¬ 𝑡 ∈ ran 𝑟 } ) = ( 𝑅1 ‘ 𝐵 ) ) |
| 30 |
29 21
|
difeq12d |
⊢ ( 𝑟 = ( 𝐹 ↾ 𝐴 ) → ( ( 𝑅1 ‘ ∩ { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1 ‘ 𝑠 ) ¬ 𝑡 ∈ ran 𝑟 } ) ∖ ran 𝑟 ) = ( ( 𝑅1 ‘ 𝐵 ) ∖ ( 𝐹 “ 𝐴 ) ) ) |
| 31 |
30
|
fveq2d |
⊢ ( 𝑟 = ( 𝐹 ↾ 𝐴 ) → ( 𝐺 ‘ ( ( 𝑅1 ‘ ∩ { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1 ‘ 𝑠 ) ¬ 𝑡 ∈ ran 𝑟 } ) ∖ ran 𝑟 ) ) = ( 𝐺 ‘ ( ( 𝑅1 ‘ 𝐵 ) ∖ ( 𝐹 “ 𝐴 ) ) ) ) |
| 32 |
31 5
|
eqtr4di |
⊢ ( 𝑟 = ( 𝐹 ↾ 𝐴 ) → ( 𝐺 ‘ ( ( 𝑅1 ‘ ∩ { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1 ‘ 𝑠 ) ¬ 𝑡 ∈ ran 𝑟 } ) ∖ ran 𝑟 ) ) = 𝐶 ) |
| 33 |
|
eleq1w |
⊢ ( 𝑦 = 𝑡 → ( 𝑦 ∈ ran 𝑤 ↔ 𝑡 ∈ ran 𝑤 ) ) |
| 34 |
33
|
notbid |
⊢ ( 𝑦 = 𝑡 → ( ¬ 𝑦 ∈ ran 𝑤 ↔ ¬ 𝑡 ∈ ran 𝑤 ) ) |
| 35 |
34
|
adantl |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) → ( ¬ 𝑦 ∈ ran 𝑤 ↔ ¬ 𝑡 ∈ ran 𝑤 ) ) |
| 36 |
|
fveq2 |
⊢ ( 𝑥 = 𝑠 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑠 ) ) |
| 37 |
36
|
adantr |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑠 ) ) |
| 38 |
35 37
|
cbvrexdva2 |
⊢ ( 𝑥 = 𝑠 → ( ∃ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ¬ 𝑦 ∈ ran 𝑤 ↔ ∃ 𝑡 ∈ ( 𝑅1 ‘ 𝑠 ) ¬ 𝑡 ∈ ran 𝑤 ) ) |
| 39 |
38
|
cbvrabv |
⊢ { 𝑥 ∈ On ∣ ∃ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ¬ 𝑦 ∈ ran 𝑤 } = { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1 ‘ 𝑠 ) ¬ 𝑡 ∈ ran 𝑤 } |
| 40 |
|
rneq |
⊢ ( 𝑤 = 𝑟 → ran 𝑤 = ran 𝑟 ) |
| 41 |
40
|
eleq2d |
⊢ ( 𝑤 = 𝑟 → ( 𝑡 ∈ ran 𝑤 ↔ 𝑡 ∈ ran 𝑟 ) ) |
| 42 |
41
|
notbid |
⊢ ( 𝑤 = 𝑟 → ( ¬ 𝑡 ∈ ran 𝑤 ↔ ¬ 𝑡 ∈ ran 𝑟 ) ) |
| 43 |
42
|
rexbidv |
⊢ ( 𝑤 = 𝑟 → ( ∃ 𝑡 ∈ ( 𝑅1 ‘ 𝑠 ) ¬ 𝑡 ∈ ran 𝑤 ↔ ∃ 𝑡 ∈ ( 𝑅1 ‘ 𝑠 ) ¬ 𝑡 ∈ ran 𝑟 ) ) |
| 44 |
43
|
rabbidv |
⊢ ( 𝑤 = 𝑟 → { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1 ‘ 𝑠 ) ¬ 𝑡 ∈ ran 𝑤 } = { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1 ‘ 𝑠 ) ¬ 𝑡 ∈ ran 𝑟 } ) |
| 45 |
39 44
|
eqtrid |
⊢ ( 𝑤 = 𝑟 → { 𝑥 ∈ On ∣ ∃ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ¬ 𝑦 ∈ ran 𝑤 } = { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1 ‘ 𝑠 ) ¬ 𝑡 ∈ ran 𝑟 } ) |
| 46 |
45
|
inteqd |
⊢ ( 𝑤 = 𝑟 → ∩ { 𝑥 ∈ On ∣ ∃ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ¬ 𝑦 ∈ ran 𝑤 } = ∩ { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1 ‘ 𝑠 ) ¬ 𝑡 ∈ ran 𝑟 } ) |
| 47 |
1 46
|
eqtrid |
⊢ ( 𝑤 = 𝑟 → 𝑀 = ∩ { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1 ‘ 𝑠 ) ¬ 𝑡 ∈ ran 𝑟 } ) |
| 48 |
47
|
fveq2d |
⊢ ( 𝑤 = 𝑟 → ( 𝑅1 ‘ 𝑀 ) = ( 𝑅1 ‘ ∩ { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1 ‘ 𝑠 ) ¬ 𝑡 ∈ ran 𝑟 } ) ) |
| 49 |
48 40
|
difeq12d |
⊢ ( 𝑤 = 𝑟 → ( ( 𝑅1 ‘ 𝑀 ) ∖ ran 𝑤 ) = ( ( 𝑅1 ‘ ∩ { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1 ‘ 𝑠 ) ¬ 𝑡 ∈ ran 𝑟 } ) ∖ ran 𝑟 ) ) |
| 50 |
49
|
fveq2d |
⊢ ( 𝑤 = 𝑟 → ( 𝐺 ‘ ( ( 𝑅1 ‘ 𝑀 ) ∖ ran 𝑤 ) ) = ( 𝐺 ‘ ( ( 𝑅1 ‘ ∩ { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1 ‘ 𝑠 ) ¬ 𝑡 ∈ ran 𝑟 } ) ∖ ran 𝑟 ) ) ) |
| 51 |
2 50
|
eqtrid |
⊢ ( 𝑤 = 𝑟 → 𝑁 = ( 𝐺 ‘ ( ( 𝑅1 ‘ ∩ { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1 ‘ 𝑠 ) ¬ 𝑡 ∈ ran 𝑟 } ) ∖ ran 𝑟 ) ) ) |
| 52 |
51
|
cbvmptv |
⊢ ( 𝑤 ∈ V ↦ 𝑁 ) = ( 𝑟 ∈ V ↦ ( 𝐺 ‘ ( ( 𝑅1 ‘ ∩ { 𝑠 ∈ On ∣ ∃ 𝑡 ∈ ( 𝑅1 ‘ 𝑠 ) ¬ 𝑡 ∈ ran 𝑟 } ) ∖ ran 𝑟 ) ) ) |
| 53 |
5
|
fvexi |
⊢ 𝐶 ∈ V |
| 54 |
32 52 53
|
fvmpt |
⊢ ( ( 𝐹 ↾ 𝐴 ) ∈ V → ( ( 𝑤 ∈ V ↦ 𝑁 ) ‘ ( 𝐹 ↾ 𝐴 ) ) = 𝐶 ) |
| 55 |
11 54
|
syl |
⊢ ( 𝐴 ∈ On → ( ( 𝑤 ∈ V ↦ 𝑁 ) ‘ ( 𝐹 ↾ 𝐴 ) ) = 𝐶 ) |
| 56 |
6 55
|
eqtrd |
⊢ ( 𝐴 ∈ On → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) |