Metamath Proof Explorer


Theorem onvf1od

Description: If G is a global choice function, then F is a bijection from the ordinals to the universe. This is the ZFC version of (1 -> 2) in https://tinyurl.com/hamkins-gblac . (Contributed by BTernaryTau, 5-Dec-2025)

Ref Expression
Hypotheses onvf1od.1 φ z z G z z
onvf1od.2 M = x On | y R1 x ¬ y ran w
onvf1od.3 N = G R1 M ran w
onvf1od.4 F = recs w V N
Assertion onvf1od φ F : On 1-1 onto V

Proof

Step Hyp Ref Expression
1 onvf1od.1 φ z z G z z
2 onvf1od.2 M = x On | y R1 x ¬ y ran w
3 onvf1od.3 N = G R1 M ran w
4 onvf1od.4 F = recs w V N
5 4 tfr1 F Fn On
6 dffn2 F Fn On F : On V
7 5 6 mpbi F : On V
8 eqid u On | v R1 u ¬ v F t = u On | v R1 u ¬ v F t
9 eqid G R1 u On | v R1 u ¬ v F t F t = G R1 u On | v R1 u ¬ v F t F t
10 2 3 4 8 9 onvf1odlem3 t On F t = G R1 u On | v R1 u ¬ v F t F t
11 10 adantl φ t On F t = G R1 u On | v R1 u ¬ v F t F t
12 fnfun F Fn On Fun F
13 vex t V
14 13 funimaex Fun F F t V
15 5 12 14 mp2b F t V
16 1 8 9 onvf1odlem2 φ F t V G R1 u On | v R1 u ¬ v F t F t R1 u On | v R1 u ¬ v F t F t
17 15 16 mpi φ G R1 u On | v R1 u ¬ v F t F t R1 u On | v R1 u ¬ v F t F t
18 17 eldifbd φ ¬ G R1 u On | v R1 u ¬ v F t F t F t
19 18 adantr φ t On ¬ G R1 u On | v R1 u ¬ v F t F t F t
20 11 19 eqneltrd φ t On ¬ F t F t
21 20 ralrimiva φ t On ¬ F t F t
22 fvex F t V
23 eldif F t V F t F t V ¬ F t F t
24 22 23 mpbiran F t V F t ¬ F t F t
25 24 ralbii t On F t V F t t On ¬ F t F t
26 5 tz7.48-2 t On F t V F t Fun F -1
27 25 26 sylbir t On ¬ F t F t Fun F -1
28 21 27 syl φ Fun F -1
29 df-f1 F : On 1-1 V F : On V Fun F -1
30 29 biimpri F : On V Fun F -1 F : On 1-1 V
31 7 28 30 sylancr φ F : On 1-1 V
32 onprc ¬ On V
33 f1f1orn F : On 1-1 V F : On 1-1 onto ran F
34 f1of1 F : On 1-1 onto ran F F : On 1-1 ran F
35 31 33 34 3syl φ F : On 1-1 ran F
36 f1dmex F : On 1-1 ran F ran F V On V
37 35 36 sylan φ ran F V On V
38 37 stoic1a φ ¬ On V ¬ ran F V
39 32 38 mpan2 φ ¬ ran F V
40 1 2 3 4 8 9 onvf1odlem4 φ ¬ ran F V ran F = V
41 39 40 mpd φ ran F = V
42 dff1o5 F : On 1-1 onto V F : On 1-1 V ran F = V
43 31 41 42 sylanbrc φ F : On 1-1 onto V