Metamath Proof Explorer


Theorem onvf1odlem4

Description: Lemma for onvf1od . If the range of F does not exist, then it must equal the universe. (Contributed by BTernaryTau, 4-Dec-2025)

Ref Expression
Hypotheses onvf1odlem4.1 φ z z G z z
onvf1odlem4.2 M = x On | y R1 x ¬ y ran w
onvf1odlem4.3 N = G R1 M ran w
onvf1odlem4.4 F = recs w V N
onvf1odlem4.5 B = u On | v R1 u ¬ v F t
onvf1odlem4.6 C = G R1 B F t
Assertion onvf1odlem4 φ ¬ ran F V ran F = V

Proof

Step Hyp Ref Expression
1 onvf1odlem4.1 φ z z G z z
2 onvf1odlem4.2 M = x On | y R1 x ¬ y ran w
3 onvf1odlem4.3 N = G R1 M ran w
4 onvf1odlem4.4 F = recs w V N
5 onvf1odlem4.5 B = u On | v R1 u ¬ v F t
6 onvf1odlem4.6 C = G R1 B F t
7 eqv ran F = V v v ran F
8 exnal v ¬ v ran F ¬ v v ran F
9 4 tfr1 F Fn On
10 fvelrnb F Fn On s ran F t On F t = s
11 9 10 ax-mp s ran F t On F t = s
12 2 3 4 5 6 onvf1odlem3 t On F t = C
13 12 adantl φ t On F t = C
14 fnfun F Fn On Fun F
15 9 14 ax-mp Fun F
16 vex t V
17 16 funimaex Fun F F t V
18 15 17 ax-mp F t V
19 1 5 6 onvf1odlem2 φ F t V C R1 B F t
20 18 19 mpi φ C R1 B F t
21 20 eldifad φ C R1 B
22 21 adantr φ t On C R1 B
23 13 22 eqeltrd φ t On F t R1 B
24 rankr1ai F t R1 B rank F t B
25 onvf1odlem1 F t V u On v R1 u ¬ v F t
26 18 25 ax-mp u On v R1 u ¬ v F t
27 onintrab2 u On v R1 u ¬ v F t u On | v R1 u ¬ v F t On
28 5 eleq1i B On u On | v R1 u ¬ v F t On
29 27 28 bitr4i u On v R1 u ¬ v F t B On
30 26 29 mpbi B On
31 30 oneli rank F t B rank F t On
32 fveq2 u = rank F t R1 u = R1 rank F t
33 32 rexeqdv u = rank F t v R1 u ¬ v F t v R1 rank F t ¬ v F t
34 33 onnminsb rank F t On rank F t u On | v R1 u ¬ v F t ¬ v R1 rank F t ¬ v F t
35 5 eleq2i rank F t B rank F t u On | v R1 u ¬ v F t
36 dfral2 v R1 rank F t v F t ¬ v R1 rank F t ¬ v F t
37 34 35 36 3imtr4g rank F t On rank F t B v R1 rank F t v F t
38 31 37 mpcom rank F t B v R1 rank F t v F t
39 imassrn F t ran F
40 39 sseli v F t v ran F
41 40 ralimi v R1 rank F t v F t v R1 rank F t v ran F
42 38 41 syl rank F t B v R1 rank F t v ran F
43 23 24 42 3syl φ t On v R1 rank F t v ran F
44 2fveq3 F t = s R1 rank F t = R1 rank s
45 44 raleqdv F t = s v R1 rank F t v ran F v R1 rank s v ran F
46 43 45 syl5ibcom φ t On F t = s v R1 rank s v ran F
47 46 rexlimdva φ t On F t = s v R1 rank s v ran F
48 11 47 biimtrid φ s ran F v R1 rank s v ran F
49 48 imp φ s ran F v R1 rank s v ran F
50 df-ral v R1 rank s v ran F v v R1 rank s v ran F
51 49 50 sylib φ s ran F v v R1 rank s v ran F
52 51 19.21bi φ s ran F v R1 rank s v ran F
53 52 con3d φ s ran F ¬ v ran F ¬ v R1 rank s
54 rankon rank s On
55 vex v V
56 55 ssrankr1 rank s On rank s rank v ¬ v R1 rank s
57 54 56 ax-mp rank s rank v ¬ v R1 rank s
58 53 57 imbitrrdi φ s ran F ¬ v ran F rank s rank v
59 58 impancom φ ¬ v ran F s ran F rank s rank v
60 59 ralrimiv φ ¬ v ran F s ran F rank s rank v
61 rankon rank v On
62 sseq2 r = rank v rank s r rank s rank v
63 62 ralbidv r = rank v s ran F rank s r s ran F rank s rank v
64 63 rspcev rank v On s ran F rank s rank v r On s ran F rank s r
65 61 64 mpan s ran F rank s rank v r On s ran F rank s r
66 bndrank r On s ran F rank s r ran F V
67 60 65 66 3syl φ ¬ v ran F ran F V
68 67 expcom ¬ v ran F φ ran F V
69 68 exlimiv v ¬ v ran F φ ran F V
70 8 69 sylbir ¬ v v ran F φ ran F V
71 7 70 sylnbi ¬ ran F = V φ ran F V
72 71 com12 φ ¬ ran F = V ran F V
73 72 con1d φ ¬ ran F V ran F = V