| Step |
Hyp |
Ref |
Expression |
| 1 |
|
onvf1odlem2.1 |
⊢ ( 𝜑 → ∀ 𝑧 ( 𝑧 ≠ ∅ → ( 𝐺 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 2 |
|
onvf1odlem2.2 |
⊢ 𝑀 = ∩ { 𝑥 ∈ On ∣ ∃ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ¬ 𝑦 ∈ 𝐴 } |
| 3 |
|
onvf1odlem2.3 |
⊢ 𝑁 = ( 𝐺 ‘ ( ( 𝑅1 ‘ 𝑀 ) ∖ 𝐴 ) ) |
| 4 |
|
onvf1odlem1 |
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 ∈ On ∃ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ¬ 𝑦 ∈ 𝐴 ) |
| 5 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑅1 |
| 6 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ On ∣ ∃ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ¬ 𝑦 ∈ 𝐴 } |
| 7 |
6
|
nfint |
⊢ Ⅎ 𝑥 ∩ { 𝑥 ∈ On ∣ ∃ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ¬ 𝑦 ∈ 𝐴 } |
| 8 |
5 7
|
nffv |
⊢ Ⅎ 𝑥 ( 𝑅1 ‘ ∩ { 𝑥 ∈ On ∣ ∃ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ¬ 𝑦 ∈ 𝐴 } ) |
| 9 |
|
nfv |
⊢ Ⅎ 𝑥 ¬ 𝑣 ∈ 𝐴 |
| 10 |
8 9
|
nfrexw |
⊢ Ⅎ 𝑥 ∃ 𝑣 ∈ ( 𝑅1 ‘ ∩ { 𝑥 ∈ On ∣ ∃ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ¬ 𝑦 ∈ 𝐴 } ) ¬ 𝑣 ∈ 𝐴 |
| 11 |
|
eleq1w |
⊢ ( 𝑦 = 𝑣 → ( 𝑦 ∈ 𝐴 ↔ 𝑣 ∈ 𝐴 ) ) |
| 12 |
11
|
notbid |
⊢ ( 𝑦 = 𝑣 → ( ¬ 𝑦 ∈ 𝐴 ↔ ¬ 𝑣 ∈ 𝐴 ) ) |
| 13 |
12
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ¬ 𝑦 ∈ 𝐴 ↔ ∃ 𝑣 ∈ ( 𝑅1 ‘ 𝑥 ) ¬ 𝑣 ∈ 𝐴 ) |
| 14 |
|
fveq2 |
⊢ ( 𝑥 = ∩ { 𝑥 ∈ On ∣ ∃ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ¬ 𝑦 ∈ 𝐴 } → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ ∩ { 𝑥 ∈ On ∣ ∃ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ¬ 𝑦 ∈ 𝐴 } ) ) |
| 15 |
14
|
rexeqdv |
⊢ ( 𝑥 = ∩ { 𝑥 ∈ On ∣ ∃ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ¬ 𝑦 ∈ 𝐴 } → ( ∃ 𝑣 ∈ ( 𝑅1 ‘ 𝑥 ) ¬ 𝑣 ∈ 𝐴 ↔ ∃ 𝑣 ∈ ( 𝑅1 ‘ ∩ { 𝑥 ∈ On ∣ ∃ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ¬ 𝑦 ∈ 𝐴 } ) ¬ 𝑣 ∈ 𝐴 ) ) |
| 16 |
13 15
|
bitrid |
⊢ ( 𝑥 = ∩ { 𝑥 ∈ On ∣ ∃ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ¬ 𝑦 ∈ 𝐴 } → ( ∃ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ¬ 𝑦 ∈ 𝐴 ↔ ∃ 𝑣 ∈ ( 𝑅1 ‘ ∩ { 𝑥 ∈ On ∣ ∃ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ¬ 𝑦 ∈ 𝐴 } ) ¬ 𝑣 ∈ 𝐴 ) ) |
| 17 |
10 16
|
onminsb |
⊢ ( ∃ 𝑥 ∈ On ∃ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ¬ 𝑦 ∈ 𝐴 → ∃ 𝑣 ∈ ( 𝑅1 ‘ ∩ { 𝑥 ∈ On ∣ ∃ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ¬ 𝑦 ∈ 𝐴 } ) ¬ 𝑣 ∈ 𝐴 ) |
| 18 |
2
|
fveq2i |
⊢ ( 𝑅1 ‘ 𝑀 ) = ( 𝑅1 ‘ ∩ { 𝑥 ∈ On ∣ ∃ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ¬ 𝑦 ∈ 𝐴 } ) |
| 19 |
18
|
rexeqi |
⊢ ( ∃ 𝑣 ∈ ( 𝑅1 ‘ 𝑀 ) ¬ 𝑣 ∈ 𝐴 ↔ ∃ 𝑣 ∈ ( 𝑅1 ‘ ∩ { 𝑥 ∈ On ∣ ∃ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ¬ 𝑦 ∈ 𝐴 } ) ¬ 𝑣 ∈ 𝐴 ) |
| 20 |
17 19
|
sylibr |
⊢ ( ∃ 𝑥 ∈ On ∃ 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ¬ 𝑦 ∈ 𝐴 → ∃ 𝑣 ∈ ( 𝑅1 ‘ 𝑀 ) ¬ 𝑣 ∈ 𝐴 ) |
| 21 |
4 20
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑣 ∈ ( 𝑅1 ‘ 𝑀 ) ¬ 𝑣 ∈ 𝐴 ) |
| 22 |
|
df-rex |
⊢ ( ∃ 𝑣 ∈ ( 𝑅1 ‘ 𝑀 ) ¬ 𝑣 ∈ 𝐴 ↔ ∃ 𝑣 ( 𝑣 ∈ ( 𝑅1 ‘ 𝑀 ) ∧ ¬ 𝑣 ∈ 𝐴 ) ) |
| 23 |
|
nss |
⊢ ( ¬ ( 𝑅1 ‘ 𝑀 ) ⊆ 𝐴 ↔ ∃ 𝑣 ( 𝑣 ∈ ( 𝑅1 ‘ 𝑀 ) ∧ ¬ 𝑣 ∈ 𝐴 ) ) |
| 24 |
|
ssdif0 |
⊢ ( ( 𝑅1 ‘ 𝑀 ) ⊆ 𝐴 ↔ ( ( 𝑅1 ‘ 𝑀 ) ∖ 𝐴 ) = ∅ ) |
| 25 |
24
|
necon3bbii |
⊢ ( ¬ ( 𝑅1 ‘ 𝑀 ) ⊆ 𝐴 ↔ ( ( 𝑅1 ‘ 𝑀 ) ∖ 𝐴 ) ≠ ∅ ) |
| 26 |
22 23 25
|
3bitr2i |
⊢ ( ∃ 𝑣 ∈ ( 𝑅1 ‘ 𝑀 ) ¬ 𝑣 ∈ 𝐴 ↔ ( ( 𝑅1 ‘ 𝑀 ) ∖ 𝐴 ) ≠ ∅ ) |
| 27 |
21 26
|
sylib |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑅1 ‘ 𝑀 ) ∖ 𝐴 ) ≠ ∅ ) |
| 28 |
|
fvex |
⊢ ( 𝑅1 ‘ 𝑀 ) ∈ V |
| 29 |
28
|
difexi |
⊢ ( ( 𝑅1 ‘ 𝑀 ) ∖ 𝐴 ) ∈ V |
| 30 |
|
neeq1 |
⊢ ( 𝑧 = ( ( 𝑅1 ‘ 𝑀 ) ∖ 𝐴 ) → ( 𝑧 ≠ ∅ ↔ ( ( 𝑅1 ‘ 𝑀 ) ∖ 𝐴 ) ≠ ∅ ) ) |
| 31 |
|
fveq2 |
⊢ ( 𝑧 = ( ( 𝑅1 ‘ 𝑀 ) ∖ 𝐴 ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ ( ( 𝑅1 ‘ 𝑀 ) ∖ 𝐴 ) ) ) |
| 32 |
|
id |
⊢ ( 𝑧 = ( ( 𝑅1 ‘ 𝑀 ) ∖ 𝐴 ) → 𝑧 = ( ( 𝑅1 ‘ 𝑀 ) ∖ 𝐴 ) ) |
| 33 |
31 32
|
eleq12d |
⊢ ( 𝑧 = ( ( 𝑅1 ‘ 𝑀 ) ∖ 𝐴 ) → ( ( 𝐺 ‘ 𝑧 ) ∈ 𝑧 ↔ ( 𝐺 ‘ ( ( 𝑅1 ‘ 𝑀 ) ∖ 𝐴 ) ) ∈ ( ( 𝑅1 ‘ 𝑀 ) ∖ 𝐴 ) ) ) |
| 34 |
30 33
|
imbi12d |
⊢ ( 𝑧 = ( ( 𝑅1 ‘ 𝑀 ) ∖ 𝐴 ) → ( ( 𝑧 ≠ ∅ → ( 𝐺 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ( ( ( 𝑅1 ‘ 𝑀 ) ∖ 𝐴 ) ≠ ∅ → ( 𝐺 ‘ ( ( 𝑅1 ‘ 𝑀 ) ∖ 𝐴 ) ) ∈ ( ( 𝑅1 ‘ 𝑀 ) ∖ 𝐴 ) ) ) ) |
| 35 |
29 34
|
spcv |
⊢ ( ∀ 𝑧 ( 𝑧 ≠ ∅ → ( 𝐺 ‘ 𝑧 ) ∈ 𝑧 ) → ( ( ( 𝑅1 ‘ 𝑀 ) ∖ 𝐴 ) ≠ ∅ → ( 𝐺 ‘ ( ( 𝑅1 ‘ 𝑀 ) ∖ 𝐴 ) ) ∈ ( ( 𝑅1 ‘ 𝑀 ) ∖ 𝐴 ) ) ) |
| 36 |
1 27 35
|
syl2im |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 → ( 𝐺 ‘ ( ( 𝑅1 ‘ 𝑀 ) ∖ 𝐴 ) ) ∈ ( ( 𝑅1 ‘ 𝑀 ) ∖ 𝐴 ) ) ) |
| 37 |
3
|
eleq1i |
⊢ ( 𝑁 ∈ ( ( 𝑅1 ‘ 𝑀 ) ∖ 𝐴 ) ↔ ( 𝐺 ‘ ( ( 𝑅1 ‘ 𝑀 ) ∖ 𝐴 ) ) ∈ ( ( 𝑅1 ‘ 𝑀 ) ∖ 𝐴 ) ) |
| 38 |
36 37
|
imbitrrdi |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 → 𝑁 ∈ ( ( 𝑅1 ‘ 𝑀 ) ∖ 𝐴 ) ) ) |