Metamath Proof Explorer


Theorem paddidm

Description: Projective subspace sum is idempotent. Part of Lemma 16.2 of MaedaMaeda p. 68. (Contributed by NM, 13-Jan-2012)

Ref Expression
Hypotheses paddidm.s 𝑆 = ( PSubSp ‘ 𝐾 )
paddidm.p + = ( +𝑃𝐾 )
Assertion paddidm ( ( 𝐾𝐵𝑋𝑆 ) → ( 𝑋 + 𝑋 ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 paddidm.s 𝑆 = ( PSubSp ‘ 𝐾 )
2 paddidm.p + = ( +𝑃𝐾 )
3 simpl ( ( 𝐾𝐵𝑋𝑆 ) → 𝐾𝐵 )
4 eqid ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 )
5 4 1 psubssat ( ( 𝐾𝐵𝑋𝑆 ) → 𝑋 ⊆ ( Atoms ‘ 𝐾 ) )
6 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
7 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
8 6 7 4 2 elpadd ( ( 𝐾𝐵𝑋 ⊆ ( Atoms ‘ 𝐾 ) ∧ 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ) → ( 𝑝 ∈ ( 𝑋 + 𝑋 ) ↔ ( ( 𝑝𝑋𝑝𝑋 ) ∨ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ∃ 𝑞𝑋𝑟𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) ) )
9 3 5 5 8 syl3anc ( ( 𝐾𝐵𝑋𝑆 ) → ( 𝑝 ∈ ( 𝑋 + 𝑋 ) ↔ ( ( 𝑝𝑋𝑝𝑋 ) ∨ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ∃ 𝑞𝑋𝑟𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) ) )
10 pm1.2 ( ( 𝑝𝑋𝑝𝑋 ) → 𝑝𝑋 )
11 10 a1i ( ( 𝐾𝐵𝑋𝑆 ) → ( ( 𝑝𝑋𝑝𝑋 ) → 𝑝𝑋 ) )
12 6 7 4 1 psubspi ( ( ( 𝐾𝐵𝑋𝑆𝑝 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ∃ 𝑞𝑋𝑟𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) → 𝑝𝑋 )
13 12 3exp1 ( 𝐾𝐵 → ( 𝑋𝑆 → ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) → ( ∃ 𝑞𝑋𝑟𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) → 𝑝𝑋 ) ) ) )
14 13 imp4b ( ( 𝐾𝐵𝑋𝑆 ) → ( ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ∃ 𝑞𝑋𝑟𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) → 𝑝𝑋 ) )
15 11 14 jaod ( ( 𝐾𝐵𝑋𝑆 ) → ( ( ( 𝑝𝑋𝑝𝑋 ) ∨ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ∃ 𝑞𝑋𝑟𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) → 𝑝𝑋 ) )
16 9 15 sylbid ( ( 𝐾𝐵𝑋𝑆 ) → ( 𝑝 ∈ ( 𝑋 + 𝑋 ) → 𝑝𝑋 ) )
17 16 ssrdv ( ( 𝐾𝐵𝑋𝑆 ) → ( 𝑋 + 𝑋 ) ⊆ 𝑋 )
18 4 2 sspadd1 ( ( 𝐾𝐵𝑋 ⊆ ( Atoms ‘ 𝐾 ) ∧ 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ) → 𝑋 ⊆ ( 𝑋 + 𝑋 ) )
19 3 5 5 18 syl3anc ( ( 𝐾𝐵𝑋𝑆 ) → 𝑋 ⊆ ( 𝑋 + 𝑋 ) )
20 17 19 eqssd ( ( 𝐾𝐵𝑋𝑆 ) → ( 𝑋 + 𝑋 ) = 𝑋 )