| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pclfval.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 2 |
|
pclfval.s |
⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) |
| 3 |
|
pclfval.c |
⊢ 𝑈 = ( PCl ‘ 𝐾 ) |
| 4 |
1
|
fvexi |
⊢ 𝐴 ∈ V |
| 5 |
4
|
elpw2 |
⊢ ( 𝑋 ∈ 𝒫 𝐴 ↔ 𝑋 ⊆ 𝐴 ) |
| 6 |
1 2 3
|
pclfvalN |
⊢ ( 𝐾 ∈ 𝑉 → 𝑈 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦 } ) ) |
| 7 |
6
|
fveq1d |
⊢ ( 𝐾 ∈ 𝑉 → ( 𝑈 ‘ 𝑋 ) = ( ( 𝑥 ∈ 𝒫 𝐴 ↦ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦 } ) ‘ 𝑋 ) ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴 ) → ( 𝑈 ‘ 𝑋 ) = ( ( 𝑥 ∈ 𝒫 𝐴 ↦ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦 } ) ‘ 𝑋 ) ) |
| 9 |
|
eqid |
⊢ ( 𝑥 ∈ 𝒫 𝐴 ↦ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦 } ) = ( 𝑥 ∈ 𝒫 𝐴 ↦ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦 } ) |
| 10 |
|
sseq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ⊆ 𝑦 ↔ 𝑋 ⊆ 𝑦 ) ) |
| 11 |
10
|
rabbidv |
⊢ ( 𝑥 = 𝑋 → { 𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦 } = { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ) |
| 12 |
11
|
inteqd |
⊢ ( 𝑥 = 𝑋 → ∩ { 𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦 } = ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ) |
| 13 |
|
simpr |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴 ) → 𝑋 ∈ 𝒫 𝐴 ) |
| 14 |
|
elpwi |
⊢ ( 𝑋 ∈ 𝒫 𝐴 → 𝑋 ⊆ 𝐴 ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴 ) → 𝑋 ⊆ 𝐴 ) |
| 16 |
1 2
|
atpsubN |
⊢ ( 𝐾 ∈ 𝑉 → 𝐴 ∈ 𝑆 ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴 ) → 𝐴 ∈ 𝑆 ) |
| 18 |
|
sseq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝑋 ⊆ 𝑦 ↔ 𝑋 ⊆ 𝐴 ) ) |
| 19 |
18
|
elrab3 |
⊢ ( 𝐴 ∈ 𝑆 → ( 𝐴 ∈ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ↔ 𝑋 ⊆ 𝐴 ) ) |
| 20 |
17 19
|
syl |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴 ) → ( 𝐴 ∈ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ↔ 𝑋 ⊆ 𝐴 ) ) |
| 21 |
15 20
|
mpbird |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴 ) → 𝐴 ∈ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ) |
| 22 |
21
|
ne0d |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴 ) → { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ≠ ∅ ) |
| 23 |
|
intex |
⊢ ( { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ≠ ∅ ↔ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ∈ V ) |
| 24 |
22 23
|
sylib |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴 ) → ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ∈ V ) |
| 25 |
9 12 13 24
|
fvmptd3 |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴 ) → ( ( 𝑥 ∈ 𝒫 𝐴 ↦ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦 } ) ‘ 𝑋 ) = ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ) |
| 26 |
8 25
|
eqtrd |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝒫 𝐴 ) → ( 𝑈 ‘ 𝑋 ) = ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ) |
| 27 |
5 26
|
sylan2br |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑈 ‘ 𝑋 ) = ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ) |