Metamath Proof Explorer


Theorem pexmidlem1N

Description: Lemma for pexmidN . Holland's proof implicitly requires q =/= r , which we prove here. (Contributed by NM, 2-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses pexmidlem.l = ( le ‘ 𝐾 )
pexmidlem.j = ( join ‘ 𝐾 )
pexmidlem.a 𝐴 = ( Atoms ‘ 𝐾 )
pexmidlem.p + = ( +𝑃𝐾 )
pexmidlem.o = ( ⊥𝑃𝐾 )
pexmidlem.m 𝑀 = ( 𝑋 + { 𝑝 } )
Assertion pexmidlem1N ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) ∧ ( 𝑟𝑋𝑞 ∈ ( 𝑋 ) ) ) → 𝑞𝑟 )

Proof

Step Hyp Ref Expression
1 pexmidlem.l = ( le ‘ 𝐾 )
2 pexmidlem.j = ( join ‘ 𝐾 )
3 pexmidlem.a 𝐴 = ( Atoms ‘ 𝐾 )
4 pexmidlem.p + = ( +𝑃𝐾 )
5 pexmidlem.o = ( ⊥𝑃𝐾 )
6 pexmidlem.m 𝑀 = ( 𝑋 + { 𝑝 } )
7 n0i ( 𝑟 ∈ ( 𝑋 ∩ ( 𝑋 ) ) → ¬ ( 𝑋 ∩ ( 𝑋 ) ) = ∅ )
8 3 5 pnonsingN ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) → ( 𝑋 ∩ ( 𝑋 ) ) = ∅ )
9 8 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) ∧ ( 𝑟𝑋𝑞 ∈ ( 𝑋 ) ) ) → ( 𝑋 ∩ ( 𝑋 ) ) = ∅ )
10 7 9 nsyl3 ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) ∧ ( 𝑟𝑋𝑞 ∈ ( 𝑋 ) ) ) → ¬ 𝑟 ∈ ( 𝑋 ∩ ( 𝑋 ) ) )
11 simprr ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) ∧ ( 𝑟𝑋𝑞 ∈ ( 𝑋 ) ) ) → 𝑞 ∈ ( 𝑋 ) )
12 eleq1w ( 𝑞 = 𝑟 → ( 𝑞 ∈ ( 𝑋 ) ↔ 𝑟 ∈ ( 𝑋 ) ) )
13 11 12 syl5ibcom ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) ∧ ( 𝑟𝑋𝑞 ∈ ( 𝑋 ) ) ) → ( 𝑞 = 𝑟𝑟 ∈ ( 𝑋 ) ) )
14 simprl ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) ∧ ( 𝑟𝑋𝑞 ∈ ( 𝑋 ) ) ) → 𝑟𝑋 )
15 13 14 jctild ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) ∧ ( 𝑟𝑋𝑞 ∈ ( 𝑋 ) ) ) → ( 𝑞 = 𝑟 → ( 𝑟𝑋𝑟 ∈ ( 𝑋 ) ) ) )
16 elin ( 𝑟 ∈ ( 𝑋 ∩ ( 𝑋 ) ) ↔ ( 𝑟𝑋𝑟 ∈ ( 𝑋 ) ) )
17 15 16 syl6ibr ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) ∧ ( 𝑟𝑋𝑞 ∈ ( 𝑋 ) ) ) → ( 𝑞 = 𝑟𝑟 ∈ ( 𝑋 ∩ ( 𝑋 ) ) ) )
18 17 necon3bd ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) ∧ ( 𝑟𝑋𝑞 ∈ ( 𝑋 ) ) ) → ( ¬ 𝑟 ∈ ( 𝑋 ∩ ( 𝑋 ) ) → 𝑞𝑟 ) )
19 10 18 mpd ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) ∧ ( 𝑟𝑋𝑞 ∈ ( 𝑋 ) ) ) → 𝑞𝑟 )