Step |
Hyp |
Ref |
Expression |
1 |
|
pexmidlem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
pexmidlem.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
pexmidlem.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
pexmidlem.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
5 |
|
pexmidlem.o |
⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) |
6 |
|
pexmidlem.m |
⊢ 𝑀 = ( 𝑋 + { 𝑝 } ) |
7 |
|
n0i |
⊢ ( 𝑟 ∈ ( 𝑋 ∩ ( ⊥ ‘ 𝑋 ) ) → ¬ ( 𝑋 ∩ ( ⊥ ‘ 𝑋 ) ) = ∅ ) |
8 |
3 5
|
pnonsingN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑋 ∩ ( ⊥ ‘ 𝑋 ) ) = ∅ ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ) ) → ( 𝑋 ∩ ( ⊥ ‘ 𝑋 ) ) = ∅ ) |
10 |
7 9
|
nsyl3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ) ) → ¬ 𝑟 ∈ ( 𝑋 ∩ ( ⊥ ‘ 𝑋 ) ) ) |
11 |
|
simprr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ) ) → 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ) |
12 |
|
eleq1w |
⊢ ( 𝑞 = 𝑟 → ( 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ↔ 𝑟 ∈ ( ⊥ ‘ 𝑋 ) ) ) |
13 |
11 12
|
syl5ibcom |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ) ) → ( 𝑞 = 𝑟 → 𝑟 ∈ ( ⊥ ‘ 𝑋 ) ) ) |
14 |
|
simprl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ) ) → 𝑟 ∈ 𝑋 ) |
15 |
13 14
|
jctild |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ) ) → ( 𝑞 = 𝑟 → ( 𝑟 ∈ 𝑋 ∧ 𝑟 ∈ ( ⊥ ‘ 𝑋 ) ) ) ) |
16 |
|
elin |
⊢ ( 𝑟 ∈ ( 𝑋 ∩ ( ⊥ ‘ 𝑋 ) ) ↔ ( 𝑟 ∈ 𝑋 ∧ 𝑟 ∈ ( ⊥ ‘ 𝑋 ) ) ) |
17 |
15 16
|
syl6ibr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ) ) → ( 𝑞 = 𝑟 → 𝑟 ∈ ( 𝑋 ∩ ( ⊥ ‘ 𝑋 ) ) ) ) |
18 |
17
|
necon3bd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ) ) → ( ¬ 𝑟 ∈ ( 𝑋 ∩ ( ⊥ ‘ 𝑋 ) ) → 𝑞 ≠ 𝑟 ) ) |
19 |
10 18
|
mpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ) ) → 𝑞 ≠ 𝑟 ) |