| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pgpfac1.k |
⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) |
| 2 |
|
pgpfac1.s |
⊢ 𝑆 = ( 𝐾 ‘ { 𝐴 } ) |
| 3 |
|
pgpfac1.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 4 |
|
pgpfac1.o |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
| 5 |
|
pgpfac1.e |
⊢ 𝐸 = ( gEx ‘ 𝐺 ) |
| 6 |
|
pgpfac1.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 7 |
|
pgpfac1.l |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
| 8 |
|
pgpfac1.p |
⊢ ( 𝜑 → 𝑃 pGrp 𝐺 ) |
| 9 |
|
pgpfac1.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
| 10 |
|
pgpfac1.n |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
| 11 |
|
pgpfac1.oe |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) = 𝐸 ) |
| 12 |
|
pgpfac1.ab |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
| 13 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
| 14 |
3
|
subgid |
⊢ ( 𝐺 ∈ Grp → 𝐵 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 15 |
9 13 14
|
3syl |
⊢ ( 𝜑 → 𝐵 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 16 |
|
eleq1 |
⊢ ( 𝑠 = 𝑢 → ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ↔ 𝑢 ∈ ( SubGrp ‘ 𝐺 ) ) ) |
| 17 |
|
eleq2 |
⊢ ( 𝑠 = 𝑢 → ( 𝐴 ∈ 𝑠 ↔ 𝐴 ∈ 𝑢 ) ) |
| 18 |
16 17
|
anbi12d |
⊢ ( 𝑠 = 𝑢 → ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑠 ) ↔ ( 𝑢 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑢 ) ) ) |
| 19 |
|
eqeq2 |
⊢ ( 𝑠 = 𝑢 → ( ( 𝑆 ⊕ 𝑡 ) = 𝑠 ↔ ( 𝑆 ⊕ 𝑡 ) = 𝑢 ) ) |
| 20 |
19
|
anbi2d |
⊢ ( 𝑠 = 𝑢 → ( ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ↔ ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑢 ) ) ) |
| 21 |
20
|
rexbidv |
⊢ ( 𝑠 = 𝑢 → ( ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ↔ ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑢 ) ) ) |
| 22 |
18 21
|
imbi12d |
⊢ ( 𝑠 = 𝑢 → ( ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑠 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ↔ ( ( 𝑢 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑢 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑢 ) ) ) ) |
| 23 |
22
|
imbi2d |
⊢ ( 𝑠 = 𝑢 → ( ( 𝜑 → ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑠 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) ↔ ( 𝜑 → ( ( 𝑢 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑢 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑢 ) ) ) ) ) |
| 24 |
|
eleq1 |
⊢ ( 𝑠 = 𝐵 → ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ↔ 𝐵 ∈ ( SubGrp ‘ 𝐺 ) ) ) |
| 25 |
|
eleq2 |
⊢ ( 𝑠 = 𝐵 → ( 𝐴 ∈ 𝑠 ↔ 𝐴 ∈ 𝐵 ) ) |
| 26 |
24 25
|
anbi12d |
⊢ ( 𝑠 = 𝐵 → ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑠 ) ↔ ( 𝐵 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝐵 ) ) ) |
| 27 |
|
eqeq2 |
⊢ ( 𝑠 = 𝐵 → ( ( 𝑆 ⊕ 𝑡 ) = 𝑠 ↔ ( 𝑆 ⊕ 𝑡 ) = 𝐵 ) ) |
| 28 |
27
|
anbi2d |
⊢ ( 𝑠 = 𝐵 → ( ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ↔ ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝐵 ) ) ) |
| 29 |
28
|
rexbidv |
⊢ ( 𝑠 = 𝐵 → ( ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ↔ ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝐵 ) ) ) |
| 30 |
26 29
|
imbi12d |
⊢ ( 𝑠 = 𝐵 → ( ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑠 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ↔ ( ( 𝐵 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝐵 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝐵 ) ) ) ) |
| 31 |
30
|
imbi2d |
⊢ ( 𝑠 = 𝐵 → ( ( 𝜑 → ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑠 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) ↔ ( 𝜑 → ( ( 𝐵 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝐵 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝐵 ) ) ) ) ) |
| 32 |
|
bi2.04 |
⊢ ( ( 𝑠 ⊊ 𝑢 → ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐴 ∈ 𝑠 → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) ) ↔ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑠 ⊊ 𝑢 → ( 𝐴 ∈ 𝑠 → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) ) ) |
| 33 |
|
impexp |
⊢ ( ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑠 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ↔ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐴 ∈ 𝑠 → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) ) |
| 34 |
33
|
imbi2i |
⊢ ( ( 𝑠 ⊊ 𝑢 → ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑠 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) ↔ ( 𝑠 ⊊ 𝑢 → ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐴 ∈ 𝑠 → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) ) ) |
| 35 |
|
impexp |
⊢ ( ( ( 𝑠 ⊊ 𝑢 ∧ 𝐴 ∈ 𝑠 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ↔ ( 𝑠 ⊊ 𝑢 → ( 𝐴 ∈ 𝑠 → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) ) |
| 36 |
35
|
imbi2i |
⊢ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) → ( ( 𝑠 ⊊ 𝑢 ∧ 𝐴 ∈ 𝑠 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) ↔ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑠 ⊊ 𝑢 → ( 𝐴 ∈ 𝑠 → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) ) ) |
| 37 |
32 34 36
|
3bitr4i |
⊢ ( ( 𝑠 ⊊ 𝑢 → ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑠 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) ↔ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) → ( ( 𝑠 ⊊ 𝑢 ∧ 𝐴 ∈ 𝑠 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) ) |
| 38 |
37
|
imbi2i |
⊢ ( ( 𝜑 → ( 𝑠 ⊊ 𝑢 → ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑠 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) ) ↔ ( 𝜑 → ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) → ( ( 𝑠 ⊊ 𝑢 ∧ 𝐴 ∈ 𝑠 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) ) ) |
| 39 |
|
bi2.04 |
⊢ ( ( 𝑠 ⊊ 𝑢 → ( 𝜑 → ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑠 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) ) ↔ ( 𝜑 → ( 𝑠 ⊊ 𝑢 → ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑠 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) ) ) |
| 40 |
|
bi2.04 |
⊢ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝜑 → ( ( 𝑠 ⊊ 𝑢 ∧ 𝐴 ∈ 𝑠 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) ) ↔ ( 𝜑 → ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) → ( ( 𝑠 ⊊ 𝑢 ∧ 𝐴 ∈ 𝑠 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) ) ) |
| 41 |
38 39 40
|
3bitr4i |
⊢ ( ( 𝑠 ⊊ 𝑢 → ( 𝜑 → ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑠 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) ) ↔ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝜑 → ( ( 𝑠 ⊊ 𝑢 ∧ 𝐴 ∈ 𝑠 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) ) ) |
| 42 |
41
|
albii |
⊢ ( ∀ 𝑠 ( 𝑠 ⊊ 𝑢 → ( 𝜑 → ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑠 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) ) ↔ ∀ 𝑠 ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝜑 → ( ( 𝑠 ⊊ 𝑢 ∧ 𝐴 ∈ 𝑠 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) ) ) |
| 43 |
|
df-ral |
⊢ ( ∀ 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ( 𝜑 → ( ( 𝑠 ⊊ 𝑢 ∧ 𝐴 ∈ 𝑠 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) ↔ ∀ 𝑠 ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝜑 → ( ( 𝑠 ⊊ 𝑢 ∧ 𝐴 ∈ 𝑠 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) ) ) |
| 44 |
|
r19.21v |
⊢ ( ∀ 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ( 𝜑 → ( ( 𝑠 ⊊ 𝑢 ∧ 𝐴 ∈ 𝑠 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) ↔ ( 𝜑 → ∀ 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑠 ⊊ 𝑢 ∧ 𝐴 ∈ 𝑠 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) ) |
| 45 |
42 43 44
|
3bitr2i |
⊢ ( ∀ 𝑠 ( 𝑠 ⊊ 𝑢 → ( 𝜑 → ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑠 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) ) ↔ ( 𝜑 → ∀ 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑠 ⊊ 𝑢 ∧ 𝐴 ∈ 𝑠 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) ) |
| 46 |
|
psseq1 |
⊢ ( 𝑥 = 𝑠 → ( 𝑥 ⊊ 𝑢 ↔ 𝑠 ⊊ 𝑢 ) ) |
| 47 |
|
eleq2 |
⊢ ( 𝑥 = 𝑠 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑠 ) ) |
| 48 |
46 47
|
anbi12d |
⊢ ( 𝑥 = 𝑠 → ( ( 𝑥 ⊊ 𝑢 ∧ 𝐴 ∈ 𝑥 ) ↔ ( 𝑠 ⊊ 𝑢 ∧ 𝐴 ∈ 𝑠 ) ) ) |
| 49 |
|
ineq2 |
⊢ ( 𝑦 = 𝑡 → ( 𝑆 ∩ 𝑦 ) = ( 𝑆 ∩ 𝑡 ) ) |
| 50 |
49
|
eqeq1d |
⊢ ( 𝑦 = 𝑡 → ( ( 𝑆 ∩ 𝑦 ) = { 0 } ↔ ( 𝑆 ∩ 𝑡 ) = { 0 } ) ) |
| 51 |
|
oveq2 |
⊢ ( 𝑦 = 𝑡 → ( 𝑆 ⊕ 𝑦 ) = ( 𝑆 ⊕ 𝑡 ) ) |
| 52 |
51
|
eqeq1d |
⊢ ( 𝑦 = 𝑡 → ( ( 𝑆 ⊕ 𝑦 ) = 𝑥 ↔ ( 𝑆 ⊕ 𝑡 ) = 𝑥 ) ) |
| 53 |
50 52
|
anbi12d |
⊢ ( 𝑦 = 𝑡 → ( ( ( 𝑆 ∩ 𝑦 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑦 ) = 𝑥 ) ↔ ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑥 ) ) ) |
| 54 |
53
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑦 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑦 ) = 𝑥 ) ↔ ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑥 ) ) |
| 55 |
|
eqeq2 |
⊢ ( 𝑥 = 𝑠 → ( ( 𝑆 ⊕ 𝑡 ) = 𝑥 ↔ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) |
| 56 |
55
|
anbi2d |
⊢ ( 𝑥 = 𝑠 → ( ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑥 ) ↔ ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) |
| 57 |
56
|
rexbidv |
⊢ ( 𝑥 = 𝑠 → ( ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑥 ) ↔ ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) |
| 58 |
54 57
|
bitrid |
⊢ ( 𝑥 = 𝑠 → ( ∃ 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑦 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑦 ) = 𝑥 ) ↔ ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) |
| 59 |
48 58
|
imbi12d |
⊢ ( 𝑥 = 𝑠 → ( ( ( 𝑥 ⊊ 𝑢 ∧ 𝐴 ∈ 𝑥 ) → ∃ 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑦 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑦 ) = 𝑥 ) ) ↔ ( ( 𝑠 ⊊ 𝑢 ∧ 𝐴 ∈ 𝑠 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) ) |
| 60 |
59
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑥 ⊊ 𝑢 ∧ 𝐴 ∈ 𝑥 ) → ∃ 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑦 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑦 ) = 𝑥 ) ) ↔ ∀ 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑠 ⊊ 𝑢 ∧ 𝐴 ∈ 𝑠 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) |
| 61 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑥 ⊊ 𝑢 ∧ 𝐴 ∈ 𝑥 ) → ∃ 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑦 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑦 ) = 𝑥 ) ) ∧ ( 𝑢 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑢 ) ) ) → 𝑃 pGrp 𝐺 ) |
| 62 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑥 ⊊ 𝑢 ∧ 𝐴 ∈ 𝑥 ) → ∃ 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑦 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑦 ) = 𝑥 ) ) ∧ ( 𝑢 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑢 ) ) ) → 𝐺 ∈ Abel ) |
| 63 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑥 ⊊ 𝑢 ∧ 𝐴 ∈ 𝑥 ) → ∃ 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑦 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑦 ) = 𝑥 ) ) ∧ ( 𝑢 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑢 ) ) ) → 𝐵 ∈ Fin ) |
| 64 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑥 ⊊ 𝑢 ∧ 𝐴 ∈ 𝑥 ) → ∃ 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑦 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑦 ) = 𝑥 ) ) ∧ ( 𝑢 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑢 ) ) ) → ( 𝑂 ‘ 𝐴 ) = 𝐸 ) |
| 65 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑥 ⊊ 𝑢 ∧ 𝐴 ∈ 𝑥 ) → ∃ 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑦 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑦 ) = 𝑥 ) ) ∧ ( 𝑢 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑢 ) ) ) → 𝑢 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 66 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑥 ⊊ 𝑢 ∧ 𝐴 ∈ 𝑥 ) → ∃ 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑦 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑦 ) = 𝑥 ) ) ∧ ( 𝑢 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑢 ) ) ) → 𝐴 ∈ 𝑢 ) |
| 67 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑥 ⊊ 𝑢 ∧ 𝐴 ∈ 𝑥 ) → ∃ 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑦 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑦 ) = 𝑥 ) ) ∧ ( 𝑢 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑢 ) ) ) → ∀ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑥 ⊊ 𝑢 ∧ 𝐴 ∈ 𝑥 ) → ∃ 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑦 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑦 ) = 𝑥 ) ) ) |
| 68 |
67 60
|
sylib |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑥 ⊊ 𝑢 ∧ 𝐴 ∈ 𝑥 ) → ∃ 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑦 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑦 ) = 𝑥 ) ) ∧ ( 𝑢 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑢 ) ) ) → ∀ 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑠 ⊊ 𝑢 ∧ 𝐴 ∈ 𝑠 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) |
| 69 |
1 2 3 4 5 6 7 61 62 63 64 65 66 68
|
pgpfac1lem5 |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑥 ⊊ 𝑢 ∧ 𝐴 ∈ 𝑥 ) → ∃ 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑦 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑦 ) = 𝑥 ) ) ∧ ( 𝑢 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑢 ) ) ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑢 ) ) |
| 70 |
69
|
exp32 |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑥 ⊊ 𝑢 ∧ 𝐴 ∈ 𝑥 ) → ∃ 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑦 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑦 ) = 𝑥 ) ) → ( ( 𝑢 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑢 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑢 ) ) ) ) |
| 71 |
60 70
|
biimtrrid |
⊢ ( 𝜑 → ( ∀ 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑠 ⊊ 𝑢 ∧ 𝐴 ∈ 𝑠 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) → ( ( 𝑢 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑢 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑢 ) ) ) ) |
| 72 |
71
|
a2i |
⊢ ( ( 𝜑 → ∀ 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑠 ⊊ 𝑢 ∧ 𝐴 ∈ 𝑠 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) → ( 𝜑 → ( ( 𝑢 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑢 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑢 ) ) ) ) |
| 73 |
45 72
|
sylbi |
⊢ ( ∀ 𝑠 ( 𝑠 ⊊ 𝑢 → ( 𝜑 → ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑠 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) ) → ( 𝜑 → ( ( 𝑢 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑢 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑢 ) ) ) ) |
| 74 |
73
|
a1i |
⊢ ( 𝑢 ∈ Fin → ( ∀ 𝑠 ( 𝑠 ⊊ 𝑢 → ( 𝜑 → ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑠 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑠 ) ) ) ) → ( 𝜑 → ( ( 𝑢 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑢 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝑢 ) ) ) ) ) |
| 75 |
23 31 74
|
findcard3 |
⊢ ( 𝐵 ∈ Fin → ( 𝜑 → ( ( 𝐵 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝐵 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝐵 ) ) ) ) |
| 76 |
10 75
|
mpcom |
⊢ ( 𝜑 → ( ( 𝐵 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝐵 ) → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝐵 ) ) ) |
| 77 |
15 12 76
|
mp2and |
⊢ ( 𝜑 → ∃ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝑆 ∩ 𝑡 ) = { 0 } ∧ ( 𝑆 ⊕ 𝑡 ) = 𝐵 ) ) |