| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pgpfac1.k |
|- K = ( mrCls ` ( SubGrp ` G ) ) |
| 2 |
|
pgpfac1.s |
|- S = ( K ` { A } ) |
| 3 |
|
pgpfac1.b |
|- B = ( Base ` G ) |
| 4 |
|
pgpfac1.o |
|- O = ( od ` G ) |
| 5 |
|
pgpfac1.e |
|- E = ( gEx ` G ) |
| 6 |
|
pgpfac1.z |
|- .0. = ( 0g ` G ) |
| 7 |
|
pgpfac1.l |
|- .(+) = ( LSSum ` G ) |
| 8 |
|
pgpfac1.p |
|- ( ph -> P pGrp G ) |
| 9 |
|
pgpfac1.g |
|- ( ph -> G e. Abel ) |
| 10 |
|
pgpfac1.n |
|- ( ph -> B e. Fin ) |
| 11 |
|
pgpfac1.oe |
|- ( ph -> ( O ` A ) = E ) |
| 12 |
|
pgpfac1.ab |
|- ( ph -> A e. B ) |
| 13 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
| 14 |
3
|
subgid |
|- ( G e. Grp -> B e. ( SubGrp ` G ) ) |
| 15 |
9 13 14
|
3syl |
|- ( ph -> B e. ( SubGrp ` G ) ) |
| 16 |
|
eleq1 |
|- ( s = u -> ( s e. ( SubGrp ` G ) <-> u e. ( SubGrp ` G ) ) ) |
| 17 |
|
eleq2 |
|- ( s = u -> ( A e. s <-> A e. u ) ) |
| 18 |
16 17
|
anbi12d |
|- ( s = u -> ( ( s e. ( SubGrp ` G ) /\ A e. s ) <-> ( u e. ( SubGrp ` G ) /\ A e. u ) ) ) |
| 19 |
|
eqeq2 |
|- ( s = u -> ( ( S .(+) t ) = s <-> ( S .(+) t ) = u ) ) |
| 20 |
19
|
anbi2d |
|- ( s = u -> ( ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) <-> ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = u ) ) ) |
| 21 |
20
|
rexbidv |
|- ( s = u -> ( E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) <-> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = u ) ) ) |
| 22 |
18 21
|
imbi12d |
|- ( s = u -> ( ( ( s e. ( SubGrp ` G ) /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) <-> ( ( u e. ( SubGrp ` G ) /\ A e. u ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = u ) ) ) ) |
| 23 |
22
|
imbi2d |
|- ( s = u -> ( ( ph -> ( ( s e. ( SubGrp ` G ) /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) <-> ( ph -> ( ( u e. ( SubGrp ` G ) /\ A e. u ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = u ) ) ) ) ) |
| 24 |
|
eleq1 |
|- ( s = B -> ( s e. ( SubGrp ` G ) <-> B e. ( SubGrp ` G ) ) ) |
| 25 |
|
eleq2 |
|- ( s = B -> ( A e. s <-> A e. B ) ) |
| 26 |
24 25
|
anbi12d |
|- ( s = B -> ( ( s e. ( SubGrp ` G ) /\ A e. s ) <-> ( B e. ( SubGrp ` G ) /\ A e. B ) ) ) |
| 27 |
|
eqeq2 |
|- ( s = B -> ( ( S .(+) t ) = s <-> ( S .(+) t ) = B ) ) |
| 28 |
27
|
anbi2d |
|- ( s = B -> ( ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) <-> ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = B ) ) ) |
| 29 |
28
|
rexbidv |
|- ( s = B -> ( E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) <-> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = B ) ) ) |
| 30 |
26 29
|
imbi12d |
|- ( s = B -> ( ( ( s e. ( SubGrp ` G ) /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) <-> ( ( B e. ( SubGrp ` G ) /\ A e. B ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = B ) ) ) ) |
| 31 |
30
|
imbi2d |
|- ( s = B -> ( ( ph -> ( ( s e. ( SubGrp ` G ) /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) <-> ( ph -> ( ( B e. ( SubGrp ` G ) /\ A e. B ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = B ) ) ) ) ) |
| 32 |
|
bi2.04 |
|- ( ( s C. u -> ( s e. ( SubGrp ` G ) -> ( A e. s -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) <-> ( s e. ( SubGrp ` G ) -> ( s C. u -> ( A e. s -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) ) |
| 33 |
|
impexp |
|- ( ( ( s e. ( SubGrp ` G ) /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) <-> ( s e. ( SubGrp ` G ) -> ( A e. s -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) |
| 34 |
33
|
imbi2i |
|- ( ( s C. u -> ( ( s e. ( SubGrp ` G ) /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) <-> ( s C. u -> ( s e. ( SubGrp ` G ) -> ( A e. s -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) ) |
| 35 |
|
impexp |
|- ( ( ( s C. u /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) <-> ( s C. u -> ( A e. s -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) |
| 36 |
35
|
imbi2i |
|- ( ( s e. ( SubGrp ` G ) -> ( ( s C. u /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) <-> ( s e. ( SubGrp ` G ) -> ( s C. u -> ( A e. s -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) ) |
| 37 |
32 34 36
|
3bitr4i |
|- ( ( s C. u -> ( ( s e. ( SubGrp ` G ) /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) <-> ( s e. ( SubGrp ` G ) -> ( ( s C. u /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) |
| 38 |
37
|
imbi2i |
|- ( ( ph -> ( s C. u -> ( ( s e. ( SubGrp ` G ) /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) <-> ( ph -> ( s e. ( SubGrp ` G ) -> ( ( s C. u /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) ) |
| 39 |
|
bi2.04 |
|- ( ( s C. u -> ( ph -> ( ( s e. ( SubGrp ` G ) /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) <-> ( ph -> ( s C. u -> ( ( s e. ( SubGrp ` G ) /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) ) |
| 40 |
|
bi2.04 |
|- ( ( s e. ( SubGrp ` G ) -> ( ph -> ( ( s C. u /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) <-> ( ph -> ( s e. ( SubGrp ` G ) -> ( ( s C. u /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) ) |
| 41 |
38 39 40
|
3bitr4i |
|- ( ( s C. u -> ( ph -> ( ( s e. ( SubGrp ` G ) /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) <-> ( s e. ( SubGrp ` G ) -> ( ph -> ( ( s C. u /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) ) |
| 42 |
41
|
albii |
|- ( A. s ( s C. u -> ( ph -> ( ( s e. ( SubGrp ` G ) /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) <-> A. s ( s e. ( SubGrp ` G ) -> ( ph -> ( ( s C. u /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) ) |
| 43 |
|
df-ral |
|- ( A. s e. ( SubGrp ` G ) ( ph -> ( ( s C. u /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) <-> A. s ( s e. ( SubGrp ` G ) -> ( ph -> ( ( s C. u /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) ) |
| 44 |
|
r19.21v |
|- ( A. s e. ( SubGrp ` G ) ( ph -> ( ( s C. u /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) <-> ( ph -> A. s e. ( SubGrp ` G ) ( ( s C. u /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) |
| 45 |
42 43 44
|
3bitr2i |
|- ( A. s ( s C. u -> ( ph -> ( ( s e. ( SubGrp ` G ) /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) <-> ( ph -> A. s e. ( SubGrp ` G ) ( ( s C. u /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) |
| 46 |
|
psseq1 |
|- ( x = s -> ( x C. u <-> s C. u ) ) |
| 47 |
|
eleq2 |
|- ( x = s -> ( A e. x <-> A e. s ) ) |
| 48 |
46 47
|
anbi12d |
|- ( x = s -> ( ( x C. u /\ A e. x ) <-> ( s C. u /\ A e. s ) ) ) |
| 49 |
|
ineq2 |
|- ( y = t -> ( S i^i y ) = ( S i^i t ) ) |
| 50 |
49
|
eqeq1d |
|- ( y = t -> ( ( S i^i y ) = { .0. } <-> ( S i^i t ) = { .0. } ) ) |
| 51 |
|
oveq2 |
|- ( y = t -> ( S .(+) y ) = ( S .(+) t ) ) |
| 52 |
51
|
eqeq1d |
|- ( y = t -> ( ( S .(+) y ) = x <-> ( S .(+) t ) = x ) ) |
| 53 |
50 52
|
anbi12d |
|- ( y = t -> ( ( ( S i^i y ) = { .0. } /\ ( S .(+) y ) = x ) <-> ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = x ) ) ) |
| 54 |
53
|
cbvrexvw |
|- ( E. y e. ( SubGrp ` G ) ( ( S i^i y ) = { .0. } /\ ( S .(+) y ) = x ) <-> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = x ) ) |
| 55 |
|
eqeq2 |
|- ( x = s -> ( ( S .(+) t ) = x <-> ( S .(+) t ) = s ) ) |
| 56 |
55
|
anbi2d |
|- ( x = s -> ( ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = x ) <-> ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) |
| 57 |
56
|
rexbidv |
|- ( x = s -> ( E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = x ) <-> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) |
| 58 |
54 57
|
bitrid |
|- ( x = s -> ( E. y e. ( SubGrp ` G ) ( ( S i^i y ) = { .0. } /\ ( S .(+) y ) = x ) <-> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) |
| 59 |
48 58
|
imbi12d |
|- ( x = s -> ( ( ( x C. u /\ A e. x ) -> E. y e. ( SubGrp ` G ) ( ( S i^i y ) = { .0. } /\ ( S .(+) y ) = x ) ) <-> ( ( s C. u /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) |
| 60 |
59
|
cbvralvw |
|- ( A. x e. ( SubGrp ` G ) ( ( x C. u /\ A e. x ) -> E. y e. ( SubGrp ` G ) ( ( S i^i y ) = { .0. } /\ ( S .(+) y ) = x ) ) <-> A. s e. ( SubGrp ` G ) ( ( s C. u /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) |
| 61 |
8
|
adantr |
|- ( ( ph /\ ( A. x e. ( SubGrp ` G ) ( ( x C. u /\ A e. x ) -> E. y e. ( SubGrp ` G ) ( ( S i^i y ) = { .0. } /\ ( S .(+) y ) = x ) ) /\ ( u e. ( SubGrp ` G ) /\ A e. u ) ) ) -> P pGrp G ) |
| 62 |
9
|
adantr |
|- ( ( ph /\ ( A. x e. ( SubGrp ` G ) ( ( x C. u /\ A e. x ) -> E. y e. ( SubGrp ` G ) ( ( S i^i y ) = { .0. } /\ ( S .(+) y ) = x ) ) /\ ( u e. ( SubGrp ` G ) /\ A e. u ) ) ) -> G e. Abel ) |
| 63 |
10
|
adantr |
|- ( ( ph /\ ( A. x e. ( SubGrp ` G ) ( ( x C. u /\ A e. x ) -> E. y e. ( SubGrp ` G ) ( ( S i^i y ) = { .0. } /\ ( S .(+) y ) = x ) ) /\ ( u e. ( SubGrp ` G ) /\ A e. u ) ) ) -> B e. Fin ) |
| 64 |
11
|
adantr |
|- ( ( ph /\ ( A. x e. ( SubGrp ` G ) ( ( x C. u /\ A e. x ) -> E. y e. ( SubGrp ` G ) ( ( S i^i y ) = { .0. } /\ ( S .(+) y ) = x ) ) /\ ( u e. ( SubGrp ` G ) /\ A e. u ) ) ) -> ( O ` A ) = E ) |
| 65 |
|
simprrl |
|- ( ( ph /\ ( A. x e. ( SubGrp ` G ) ( ( x C. u /\ A e. x ) -> E. y e. ( SubGrp ` G ) ( ( S i^i y ) = { .0. } /\ ( S .(+) y ) = x ) ) /\ ( u e. ( SubGrp ` G ) /\ A e. u ) ) ) -> u e. ( SubGrp ` G ) ) |
| 66 |
|
simprrr |
|- ( ( ph /\ ( A. x e. ( SubGrp ` G ) ( ( x C. u /\ A e. x ) -> E. y e. ( SubGrp ` G ) ( ( S i^i y ) = { .0. } /\ ( S .(+) y ) = x ) ) /\ ( u e. ( SubGrp ` G ) /\ A e. u ) ) ) -> A e. u ) |
| 67 |
|
simprl |
|- ( ( ph /\ ( A. x e. ( SubGrp ` G ) ( ( x C. u /\ A e. x ) -> E. y e. ( SubGrp ` G ) ( ( S i^i y ) = { .0. } /\ ( S .(+) y ) = x ) ) /\ ( u e. ( SubGrp ` G ) /\ A e. u ) ) ) -> A. x e. ( SubGrp ` G ) ( ( x C. u /\ A e. x ) -> E. y e. ( SubGrp ` G ) ( ( S i^i y ) = { .0. } /\ ( S .(+) y ) = x ) ) ) |
| 68 |
67 60
|
sylib |
|- ( ( ph /\ ( A. x e. ( SubGrp ` G ) ( ( x C. u /\ A e. x ) -> E. y e. ( SubGrp ` G ) ( ( S i^i y ) = { .0. } /\ ( S .(+) y ) = x ) ) /\ ( u e. ( SubGrp ` G ) /\ A e. u ) ) ) -> A. s e. ( SubGrp ` G ) ( ( s C. u /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) |
| 69 |
1 2 3 4 5 6 7 61 62 63 64 65 66 68
|
pgpfac1lem5 |
|- ( ( ph /\ ( A. x e. ( SubGrp ` G ) ( ( x C. u /\ A e. x ) -> E. y e. ( SubGrp ` G ) ( ( S i^i y ) = { .0. } /\ ( S .(+) y ) = x ) ) /\ ( u e. ( SubGrp ` G ) /\ A e. u ) ) ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = u ) ) |
| 70 |
69
|
exp32 |
|- ( ph -> ( A. x e. ( SubGrp ` G ) ( ( x C. u /\ A e. x ) -> E. y e. ( SubGrp ` G ) ( ( S i^i y ) = { .0. } /\ ( S .(+) y ) = x ) ) -> ( ( u e. ( SubGrp ` G ) /\ A e. u ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = u ) ) ) ) |
| 71 |
60 70
|
biimtrrid |
|- ( ph -> ( A. s e. ( SubGrp ` G ) ( ( s C. u /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) -> ( ( u e. ( SubGrp ` G ) /\ A e. u ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = u ) ) ) ) |
| 72 |
71
|
a2i |
|- ( ( ph -> A. s e. ( SubGrp ` G ) ( ( s C. u /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) -> ( ph -> ( ( u e. ( SubGrp ` G ) /\ A e. u ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = u ) ) ) ) |
| 73 |
45 72
|
sylbi |
|- ( A. s ( s C. u -> ( ph -> ( ( s e. ( SubGrp ` G ) /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) -> ( ph -> ( ( u e. ( SubGrp ` G ) /\ A e. u ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = u ) ) ) ) |
| 74 |
73
|
a1i |
|- ( u e. Fin -> ( A. s ( s C. u -> ( ph -> ( ( s e. ( SubGrp ` G ) /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) -> ( ph -> ( ( u e. ( SubGrp ` G ) /\ A e. u ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = u ) ) ) ) ) |
| 75 |
23 31 74
|
findcard3 |
|- ( B e. Fin -> ( ph -> ( ( B e. ( SubGrp ` G ) /\ A e. B ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = B ) ) ) ) |
| 76 |
10 75
|
mpcom |
|- ( ph -> ( ( B e. ( SubGrp ` G ) /\ A e. B ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = B ) ) ) |
| 77 |
15 12 76
|
mp2and |
|- ( ph -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = B ) ) |