| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pgpfac1.k |
|- K = ( mrCls ` ( SubGrp ` G ) ) |
| 2 |
|
pgpfac1.s |
|- S = ( K ` { A } ) |
| 3 |
|
pgpfac1.b |
|- B = ( Base ` G ) |
| 4 |
|
pgpfac1.o |
|- O = ( od ` G ) |
| 5 |
|
pgpfac1.e |
|- E = ( gEx ` G ) |
| 6 |
|
pgpfac1.z |
|- .0. = ( 0g ` G ) |
| 7 |
|
pgpfac1.l |
|- .(+) = ( LSSum ` G ) |
| 8 |
|
pgpfac1.p |
|- ( ph -> P pGrp G ) |
| 9 |
|
pgpfac1.g |
|- ( ph -> G e. Abel ) |
| 10 |
|
pgpfac1.n |
|- ( ph -> B e. Fin ) |
| 11 |
|
pgpfac1.oe |
|- ( ph -> ( O ` A ) = E ) |
| 12 |
|
pgpfac1.u |
|- ( ph -> U e. ( SubGrp ` G ) ) |
| 13 |
|
pgpfac1.au |
|- ( ph -> A e. U ) |
| 14 |
|
pgpfac1.3 |
|- ( ph -> A. s e. ( SubGrp ` G ) ( ( s C. U /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) |
| 15 |
|
pwfi |
|- ( B e. Fin <-> ~P B e. Fin ) |
| 16 |
10 15
|
sylib |
|- ( ph -> ~P B e. Fin ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ S C. U ) -> ~P B e. Fin ) |
| 18 |
3
|
subgss |
|- ( v e. ( SubGrp ` G ) -> v C_ B ) |
| 19 |
18
|
3ad2ant2 |
|- ( ( ( ph /\ S C. U ) /\ v e. ( SubGrp ` G ) /\ ( v C. U /\ A e. v ) ) -> v C_ B ) |
| 20 |
|
velpw |
|- ( v e. ~P B <-> v C_ B ) |
| 21 |
19 20
|
sylibr |
|- ( ( ( ph /\ S C. U ) /\ v e. ( SubGrp ` G ) /\ ( v C. U /\ A e. v ) ) -> v e. ~P B ) |
| 22 |
21
|
rabssdv |
|- ( ( ph /\ S C. U ) -> { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } C_ ~P B ) |
| 23 |
17 22
|
ssfid |
|- ( ( ph /\ S C. U ) -> { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } e. Fin ) |
| 24 |
|
finnum |
|- ( { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } e. Fin -> { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } e. dom card ) |
| 25 |
23 24
|
syl |
|- ( ( ph /\ S C. U ) -> { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } e. dom card ) |
| 26 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
| 27 |
9 26
|
syl |
|- ( ph -> G e. Grp ) |
| 28 |
3
|
subgacs |
|- ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` B ) ) |
| 29 |
|
acsmre |
|- ( ( SubGrp ` G ) e. ( ACS ` B ) -> ( SubGrp ` G ) e. ( Moore ` B ) ) |
| 30 |
27 28 29
|
3syl |
|- ( ph -> ( SubGrp ` G ) e. ( Moore ` B ) ) |
| 31 |
3
|
subgss |
|- ( U e. ( SubGrp ` G ) -> U C_ B ) |
| 32 |
12 31
|
syl |
|- ( ph -> U C_ B ) |
| 33 |
32 13
|
sseldd |
|- ( ph -> A e. B ) |
| 34 |
1
|
mrcsncl |
|- ( ( ( SubGrp ` G ) e. ( Moore ` B ) /\ A e. B ) -> ( K ` { A } ) e. ( SubGrp ` G ) ) |
| 35 |
30 33 34
|
syl2anc |
|- ( ph -> ( K ` { A } ) e. ( SubGrp ` G ) ) |
| 36 |
2 35
|
eqeltrid |
|- ( ph -> S e. ( SubGrp ` G ) ) |
| 37 |
36
|
adantr |
|- ( ( ph /\ S C. U ) -> S e. ( SubGrp ` G ) ) |
| 38 |
|
simpr |
|- ( ( ph /\ S C. U ) -> S C. U ) |
| 39 |
13
|
snssd |
|- ( ph -> { A } C_ U ) |
| 40 |
39 32
|
sstrd |
|- ( ph -> { A } C_ B ) |
| 41 |
30 1 40
|
mrcssidd |
|- ( ph -> { A } C_ ( K ` { A } ) ) |
| 42 |
41 2
|
sseqtrrdi |
|- ( ph -> { A } C_ S ) |
| 43 |
|
snssg |
|- ( A e. B -> ( A e. S <-> { A } C_ S ) ) |
| 44 |
33 43
|
syl |
|- ( ph -> ( A e. S <-> { A } C_ S ) ) |
| 45 |
42 44
|
mpbird |
|- ( ph -> A e. S ) |
| 46 |
45
|
adantr |
|- ( ( ph /\ S C. U ) -> A e. S ) |
| 47 |
|
psseq1 |
|- ( v = S -> ( v C. U <-> S C. U ) ) |
| 48 |
|
eleq2 |
|- ( v = S -> ( A e. v <-> A e. S ) ) |
| 49 |
47 48
|
anbi12d |
|- ( v = S -> ( ( v C. U /\ A e. v ) <-> ( S C. U /\ A e. S ) ) ) |
| 50 |
49
|
rspcev |
|- ( ( S e. ( SubGrp ` G ) /\ ( S C. U /\ A e. S ) ) -> E. v e. ( SubGrp ` G ) ( v C. U /\ A e. v ) ) |
| 51 |
37 38 46 50
|
syl12anc |
|- ( ( ph /\ S C. U ) -> E. v e. ( SubGrp ` G ) ( v C. U /\ A e. v ) ) |
| 52 |
|
rabn0 |
|- ( { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } =/= (/) <-> E. v e. ( SubGrp ` G ) ( v C. U /\ A e. v ) ) |
| 53 |
51 52
|
sylibr |
|- ( ( ph /\ S C. U ) -> { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } =/= (/) ) |
| 54 |
|
simpr1 |
|- ( ( ( ph /\ S C. U ) /\ ( u C_ { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } /\ u =/= (/) /\ [C.] Or u ) ) -> u C_ { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } ) |
| 55 |
|
simpr2 |
|- ( ( ( ph /\ S C. U ) /\ ( u C_ { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } /\ u =/= (/) /\ [C.] Or u ) ) -> u =/= (/) ) |
| 56 |
23
|
adantr |
|- ( ( ( ph /\ S C. U ) /\ ( u C_ { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } /\ u =/= (/) /\ [C.] Or u ) ) -> { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } e. Fin ) |
| 57 |
56 54
|
ssfid |
|- ( ( ( ph /\ S C. U ) /\ ( u C_ { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } /\ u =/= (/) /\ [C.] Or u ) ) -> u e. Fin ) |
| 58 |
|
simpr3 |
|- ( ( ( ph /\ S C. U ) /\ ( u C_ { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } /\ u =/= (/) /\ [C.] Or u ) ) -> [C.] Or u ) |
| 59 |
|
fin1a2lem10 |
|- ( ( u =/= (/) /\ u e. Fin /\ [C.] Or u ) -> U. u e. u ) |
| 60 |
55 57 58 59
|
syl3anc |
|- ( ( ( ph /\ S C. U ) /\ ( u C_ { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } /\ u =/= (/) /\ [C.] Or u ) ) -> U. u e. u ) |
| 61 |
54 60
|
sseldd |
|- ( ( ( ph /\ S C. U ) /\ ( u C_ { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } /\ u =/= (/) /\ [C.] Or u ) ) -> U. u e. { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } ) |
| 62 |
61
|
ex |
|- ( ( ph /\ S C. U ) -> ( ( u C_ { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } /\ u =/= (/) /\ [C.] Or u ) -> U. u e. { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } ) ) |
| 63 |
62
|
alrimiv |
|- ( ( ph /\ S C. U ) -> A. u ( ( u C_ { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } /\ u =/= (/) /\ [C.] Or u ) -> U. u e. { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } ) ) |
| 64 |
|
zornn0g |
|- ( ( { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } e. dom card /\ { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } =/= (/) /\ A. u ( ( u C_ { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } /\ u =/= (/) /\ [C.] Or u ) -> U. u e. { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } ) ) -> E. s e. { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } A. w e. { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } -. s C. w ) |
| 65 |
25 53 63 64
|
syl3anc |
|- ( ( ph /\ S C. U ) -> E. s e. { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } A. w e. { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } -. s C. w ) |
| 66 |
|
psseq1 |
|- ( v = w -> ( v C. U <-> w C. U ) ) |
| 67 |
|
eleq2 |
|- ( v = w -> ( A e. v <-> A e. w ) ) |
| 68 |
66 67
|
anbi12d |
|- ( v = w -> ( ( v C. U /\ A e. v ) <-> ( w C. U /\ A e. w ) ) ) |
| 69 |
68
|
ralrab |
|- ( A. w e. { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } -. s C. w <-> A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) |
| 70 |
69
|
rexbii |
|- ( E. s e. { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } A. w e. { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } -. s C. w <-> E. s e. { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) |
| 71 |
65 70
|
sylib |
|- ( ( ph /\ S C. U ) -> E. s e. { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) |
| 72 |
71
|
ex |
|- ( ph -> ( S C. U -> E. s e. { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) ) |
| 73 |
|
psseq1 |
|- ( v = s -> ( v C. U <-> s C. U ) ) |
| 74 |
|
eleq2 |
|- ( v = s -> ( A e. v <-> A e. s ) ) |
| 75 |
73 74
|
anbi12d |
|- ( v = s -> ( ( v C. U /\ A e. v ) <-> ( s C. U /\ A e. s ) ) ) |
| 76 |
75
|
ralrab |
|- ( A. s e. { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) <-> A. s e. ( SubGrp ` G ) ( ( s C. U /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) |
| 77 |
14 76
|
sylibr |
|- ( ph -> A. s e. { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) |
| 78 |
|
r19.29 |
|- ( ( A. s e. { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) /\ E. s e. { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) -> E. s e. { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } ( E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) /\ A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) ) |
| 79 |
75
|
elrab |
|- ( s e. { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } <-> ( s e. ( SubGrp ` G ) /\ ( s C. U /\ A e. s ) ) ) |
| 80 |
|
ineq2 |
|- ( t = v -> ( S i^i t ) = ( S i^i v ) ) |
| 81 |
80
|
eqeq1d |
|- ( t = v -> ( ( S i^i t ) = { .0. } <-> ( S i^i v ) = { .0. } ) ) |
| 82 |
|
oveq2 |
|- ( t = v -> ( S .(+) t ) = ( S .(+) v ) ) |
| 83 |
82
|
eqeq1d |
|- ( t = v -> ( ( S .(+) t ) = s <-> ( S .(+) v ) = s ) ) |
| 84 |
81 83
|
anbi12d |
|- ( t = v -> ( ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) <-> ( ( S i^i v ) = { .0. } /\ ( S .(+) v ) = s ) ) ) |
| 85 |
84
|
cbvrexvw |
|- ( E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) <-> E. v e. ( SubGrp ` G ) ( ( S i^i v ) = { .0. } /\ ( S .(+) v ) = s ) ) |
| 86 |
|
simprrl |
|- ( ( ph /\ ( s e. ( SubGrp ` G ) /\ ( s C. U /\ A e. s ) ) ) -> s C. U ) |
| 87 |
86
|
ad2antrr |
|- ( ( ( ( ph /\ ( s e. ( SubGrp ` G ) /\ ( s C. U /\ A e. s ) ) ) /\ v e. ( SubGrp ` G ) ) /\ ( ( S i^i v ) = { .0. } /\ ( S .(+) v ) = s /\ A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) ) -> s C. U ) |
| 88 |
|
simpr2 |
|- ( ( ( ( ph /\ ( s e. ( SubGrp ` G ) /\ ( s C. U /\ A e. s ) ) ) /\ v e. ( SubGrp ` G ) ) /\ ( ( S i^i v ) = { .0. } /\ ( S .(+) v ) = s /\ A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) ) -> ( S .(+) v ) = s ) |
| 89 |
88
|
psseq1d |
|- ( ( ( ( ph /\ ( s e. ( SubGrp ` G ) /\ ( s C. U /\ A e. s ) ) ) /\ v e. ( SubGrp ` G ) ) /\ ( ( S i^i v ) = { .0. } /\ ( S .(+) v ) = s /\ A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) ) -> ( ( S .(+) v ) C. U <-> s C. U ) ) |
| 90 |
87 89
|
mpbird |
|- ( ( ( ( ph /\ ( s e. ( SubGrp ` G ) /\ ( s C. U /\ A e. s ) ) ) /\ v e. ( SubGrp ` G ) ) /\ ( ( S i^i v ) = { .0. } /\ ( S .(+) v ) = s /\ A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) ) -> ( S .(+) v ) C. U ) |
| 91 |
|
pssdif |
|- ( ( S .(+) v ) C. U -> ( U \ ( S .(+) v ) ) =/= (/) ) |
| 92 |
|
n0 |
|- ( ( U \ ( S .(+) v ) ) =/= (/) <-> E. b b e. ( U \ ( S .(+) v ) ) ) |
| 93 |
91 92
|
sylib |
|- ( ( S .(+) v ) C. U -> E. b b e. ( U \ ( S .(+) v ) ) ) |
| 94 |
90 93
|
syl |
|- ( ( ( ( ph /\ ( s e. ( SubGrp ` G ) /\ ( s C. U /\ A e. s ) ) ) /\ v e. ( SubGrp ` G ) ) /\ ( ( S i^i v ) = { .0. } /\ ( S .(+) v ) = s /\ A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) ) -> E. b b e. ( U \ ( S .(+) v ) ) ) |
| 95 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ ( s e. ( SubGrp ` G ) /\ ( s C. U /\ A e. s ) ) ) /\ v e. ( SubGrp ` G ) ) /\ ( ( ( S i^i v ) = { .0. } /\ ( S .(+) v ) = s /\ A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) /\ b e. ( U \ ( S .(+) v ) ) ) ) -> P pGrp G ) |
| 96 |
9
|
ad3antrrr |
|- ( ( ( ( ph /\ ( s e. ( SubGrp ` G ) /\ ( s C. U /\ A e. s ) ) ) /\ v e. ( SubGrp ` G ) ) /\ ( ( ( S i^i v ) = { .0. } /\ ( S .(+) v ) = s /\ A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) /\ b e. ( U \ ( S .(+) v ) ) ) ) -> G e. Abel ) |
| 97 |
10
|
ad3antrrr |
|- ( ( ( ( ph /\ ( s e. ( SubGrp ` G ) /\ ( s C. U /\ A e. s ) ) ) /\ v e. ( SubGrp ` G ) ) /\ ( ( ( S i^i v ) = { .0. } /\ ( S .(+) v ) = s /\ A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) /\ b e. ( U \ ( S .(+) v ) ) ) ) -> B e. Fin ) |
| 98 |
11
|
ad3antrrr |
|- ( ( ( ( ph /\ ( s e. ( SubGrp ` G ) /\ ( s C. U /\ A e. s ) ) ) /\ v e. ( SubGrp ` G ) ) /\ ( ( ( S i^i v ) = { .0. } /\ ( S .(+) v ) = s /\ A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) /\ b e. ( U \ ( S .(+) v ) ) ) ) -> ( O ` A ) = E ) |
| 99 |
12
|
ad3antrrr |
|- ( ( ( ( ph /\ ( s e. ( SubGrp ` G ) /\ ( s C. U /\ A e. s ) ) ) /\ v e. ( SubGrp ` G ) ) /\ ( ( ( S i^i v ) = { .0. } /\ ( S .(+) v ) = s /\ A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) /\ b e. ( U \ ( S .(+) v ) ) ) ) -> U e. ( SubGrp ` G ) ) |
| 100 |
13
|
ad3antrrr |
|- ( ( ( ( ph /\ ( s e. ( SubGrp ` G ) /\ ( s C. U /\ A e. s ) ) ) /\ v e. ( SubGrp ` G ) ) /\ ( ( ( S i^i v ) = { .0. } /\ ( S .(+) v ) = s /\ A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) /\ b e. ( U \ ( S .(+) v ) ) ) ) -> A e. U ) |
| 101 |
|
simplr |
|- ( ( ( ( ph /\ ( s e. ( SubGrp ` G ) /\ ( s C. U /\ A e. s ) ) ) /\ v e. ( SubGrp ` G ) ) /\ ( ( ( S i^i v ) = { .0. } /\ ( S .(+) v ) = s /\ A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) /\ b e. ( U \ ( S .(+) v ) ) ) ) -> v e. ( SubGrp ` G ) ) |
| 102 |
|
simprl1 |
|- ( ( ( ( ph /\ ( s e. ( SubGrp ` G ) /\ ( s C. U /\ A e. s ) ) ) /\ v e. ( SubGrp ` G ) ) /\ ( ( ( S i^i v ) = { .0. } /\ ( S .(+) v ) = s /\ A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) /\ b e. ( U \ ( S .(+) v ) ) ) ) -> ( S i^i v ) = { .0. } ) |
| 103 |
90
|
adantrr |
|- ( ( ( ( ph /\ ( s e. ( SubGrp ` G ) /\ ( s C. U /\ A e. s ) ) ) /\ v e. ( SubGrp ` G ) ) /\ ( ( ( S i^i v ) = { .0. } /\ ( S .(+) v ) = s /\ A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) /\ b e. ( U \ ( S .(+) v ) ) ) ) -> ( S .(+) v ) C. U ) |
| 104 |
103
|
pssssd |
|- ( ( ( ( ph /\ ( s e. ( SubGrp ` G ) /\ ( s C. U /\ A e. s ) ) ) /\ v e. ( SubGrp ` G ) ) /\ ( ( ( S i^i v ) = { .0. } /\ ( S .(+) v ) = s /\ A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) /\ b e. ( U \ ( S .(+) v ) ) ) ) -> ( S .(+) v ) C_ U ) |
| 105 |
|
simprl3 |
|- ( ( ( ( ph /\ ( s e. ( SubGrp ` G ) /\ ( s C. U /\ A e. s ) ) ) /\ v e. ( SubGrp ` G ) ) /\ ( ( ( S i^i v ) = { .0. } /\ ( S .(+) v ) = s /\ A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) /\ b e. ( U \ ( S .(+) v ) ) ) ) -> A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) |
| 106 |
88
|
adantrr |
|- ( ( ( ( ph /\ ( s e. ( SubGrp ` G ) /\ ( s C. U /\ A e. s ) ) ) /\ v e. ( SubGrp ` G ) ) /\ ( ( ( S i^i v ) = { .0. } /\ ( S .(+) v ) = s /\ A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) /\ b e. ( U \ ( S .(+) v ) ) ) ) -> ( S .(+) v ) = s ) |
| 107 |
|
psseq1 |
|- ( ( S .(+) v ) = s -> ( ( S .(+) v ) C. y <-> s C. y ) ) |
| 108 |
107
|
notbid |
|- ( ( S .(+) v ) = s -> ( -. ( S .(+) v ) C. y <-> -. s C. y ) ) |
| 109 |
108
|
imbi2d |
|- ( ( S .(+) v ) = s -> ( ( ( y C. U /\ A e. y ) -> -. ( S .(+) v ) C. y ) <-> ( ( y C. U /\ A e. y ) -> -. s C. y ) ) ) |
| 110 |
109
|
ralbidv |
|- ( ( S .(+) v ) = s -> ( A. y e. ( SubGrp ` G ) ( ( y C. U /\ A e. y ) -> -. ( S .(+) v ) C. y ) <-> A. y e. ( SubGrp ` G ) ( ( y C. U /\ A e. y ) -> -. s C. y ) ) ) |
| 111 |
|
psseq1 |
|- ( y = w -> ( y C. U <-> w C. U ) ) |
| 112 |
|
eleq2 |
|- ( y = w -> ( A e. y <-> A e. w ) ) |
| 113 |
111 112
|
anbi12d |
|- ( y = w -> ( ( y C. U /\ A e. y ) <-> ( w C. U /\ A e. w ) ) ) |
| 114 |
|
psseq2 |
|- ( y = w -> ( s C. y <-> s C. w ) ) |
| 115 |
114
|
notbid |
|- ( y = w -> ( -. s C. y <-> -. s C. w ) ) |
| 116 |
113 115
|
imbi12d |
|- ( y = w -> ( ( ( y C. U /\ A e. y ) -> -. s C. y ) <-> ( ( w C. U /\ A e. w ) -> -. s C. w ) ) ) |
| 117 |
116
|
cbvralvw |
|- ( A. y e. ( SubGrp ` G ) ( ( y C. U /\ A e. y ) -> -. s C. y ) <-> A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) |
| 118 |
110 117
|
bitrdi |
|- ( ( S .(+) v ) = s -> ( A. y e. ( SubGrp ` G ) ( ( y C. U /\ A e. y ) -> -. ( S .(+) v ) C. y ) <-> A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) ) |
| 119 |
106 118
|
syl |
|- ( ( ( ( ph /\ ( s e. ( SubGrp ` G ) /\ ( s C. U /\ A e. s ) ) ) /\ v e. ( SubGrp ` G ) ) /\ ( ( ( S i^i v ) = { .0. } /\ ( S .(+) v ) = s /\ A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) /\ b e. ( U \ ( S .(+) v ) ) ) ) -> ( A. y e. ( SubGrp ` G ) ( ( y C. U /\ A e. y ) -> -. ( S .(+) v ) C. y ) <-> A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) ) |
| 120 |
105 119
|
mpbird |
|- ( ( ( ( ph /\ ( s e. ( SubGrp ` G ) /\ ( s C. U /\ A e. s ) ) ) /\ v e. ( SubGrp ` G ) ) /\ ( ( ( S i^i v ) = { .0. } /\ ( S .(+) v ) = s /\ A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) /\ b e. ( U \ ( S .(+) v ) ) ) ) -> A. y e. ( SubGrp ` G ) ( ( y C. U /\ A e. y ) -> -. ( S .(+) v ) C. y ) ) |
| 121 |
|
simprr |
|- ( ( ( ( ph /\ ( s e. ( SubGrp ` G ) /\ ( s C. U /\ A e. s ) ) ) /\ v e. ( SubGrp ` G ) ) /\ ( ( ( S i^i v ) = { .0. } /\ ( S .(+) v ) = s /\ A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) /\ b e. ( U \ ( S .(+) v ) ) ) ) -> b e. ( U \ ( S .(+) v ) ) ) |
| 122 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
| 123 |
1 2 3 4 5 6 7 95 96 97 98 99 100 101 102 104 120 121 122
|
pgpfac1lem4 |
|- ( ( ( ( ph /\ ( s e. ( SubGrp ` G ) /\ ( s C. U /\ A e. s ) ) ) /\ v e. ( SubGrp ` G ) ) /\ ( ( ( S i^i v ) = { .0. } /\ ( S .(+) v ) = s /\ A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) /\ b e. ( U \ ( S .(+) v ) ) ) ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = U ) ) |
| 124 |
123
|
expr |
|- ( ( ( ( ph /\ ( s e. ( SubGrp ` G ) /\ ( s C. U /\ A e. s ) ) ) /\ v e. ( SubGrp ` G ) ) /\ ( ( S i^i v ) = { .0. } /\ ( S .(+) v ) = s /\ A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) ) -> ( b e. ( U \ ( S .(+) v ) ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = U ) ) ) |
| 125 |
124
|
exlimdv |
|- ( ( ( ( ph /\ ( s e. ( SubGrp ` G ) /\ ( s C. U /\ A e. s ) ) ) /\ v e. ( SubGrp ` G ) ) /\ ( ( S i^i v ) = { .0. } /\ ( S .(+) v ) = s /\ A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) ) -> ( E. b b e. ( U \ ( S .(+) v ) ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = U ) ) ) |
| 126 |
94 125
|
mpd |
|- ( ( ( ( ph /\ ( s e. ( SubGrp ` G ) /\ ( s C. U /\ A e. s ) ) ) /\ v e. ( SubGrp ` G ) ) /\ ( ( S i^i v ) = { .0. } /\ ( S .(+) v ) = s /\ A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = U ) ) |
| 127 |
126
|
3exp2 |
|- ( ( ( ph /\ ( s e. ( SubGrp ` G ) /\ ( s C. U /\ A e. s ) ) ) /\ v e. ( SubGrp ` G ) ) -> ( ( S i^i v ) = { .0. } -> ( ( S .(+) v ) = s -> ( A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = U ) ) ) ) ) |
| 128 |
127
|
impd |
|- ( ( ( ph /\ ( s e. ( SubGrp ` G ) /\ ( s C. U /\ A e. s ) ) ) /\ v e. ( SubGrp ` G ) ) -> ( ( ( S i^i v ) = { .0. } /\ ( S .(+) v ) = s ) -> ( A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = U ) ) ) ) |
| 129 |
128
|
rexlimdva |
|- ( ( ph /\ ( s e. ( SubGrp ` G ) /\ ( s C. U /\ A e. s ) ) ) -> ( E. v e. ( SubGrp ` G ) ( ( S i^i v ) = { .0. } /\ ( S .(+) v ) = s ) -> ( A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = U ) ) ) ) |
| 130 |
85 129
|
biimtrid |
|- ( ( ph /\ ( s e. ( SubGrp ` G ) /\ ( s C. U /\ A e. s ) ) ) -> ( E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) -> ( A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = U ) ) ) ) |
| 131 |
130
|
impd |
|- ( ( ph /\ ( s e. ( SubGrp ` G ) /\ ( s C. U /\ A e. s ) ) ) -> ( ( E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) /\ A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = U ) ) ) |
| 132 |
79 131
|
sylan2b |
|- ( ( ph /\ s e. { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } ) -> ( ( E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) /\ A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = U ) ) ) |
| 133 |
132
|
rexlimdva |
|- ( ph -> ( E. s e. { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } ( E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) /\ A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = U ) ) ) |
| 134 |
78 133
|
syl5 |
|- ( ph -> ( ( A. s e. { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) /\ E. s e. { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = U ) ) ) |
| 135 |
77 134
|
mpand |
|- ( ph -> ( E. s e. { v e. ( SubGrp ` G ) | ( v C. U /\ A e. v ) } A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. s C. w ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = U ) ) ) |
| 136 |
72 135
|
syld |
|- ( ph -> ( S C. U -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = U ) ) ) |
| 137 |
6
|
0subg |
|- ( G e. Grp -> { .0. } e. ( SubGrp ` G ) ) |
| 138 |
27 137
|
syl |
|- ( ph -> { .0. } e. ( SubGrp ` G ) ) |
| 139 |
138
|
adantr |
|- ( ( ph /\ S = U ) -> { .0. } e. ( SubGrp ` G ) ) |
| 140 |
6
|
subg0cl |
|- ( S e. ( SubGrp ` G ) -> .0. e. S ) |
| 141 |
36 140
|
syl |
|- ( ph -> .0. e. S ) |
| 142 |
141
|
snssd |
|- ( ph -> { .0. } C_ S ) |
| 143 |
142
|
adantr |
|- ( ( ph /\ S = U ) -> { .0. } C_ S ) |
| 144 |
|
sseqin2 |
|- ( { .0. } C_ S <-> ( S i^i { .0. } ) = { .0. } ) |
| 145 |
143 144
|
sylib |
|- ( ( ph /\ S = U ) -> ( S i^i { .0. } ) = { .0. } ) |
| 146 |
7
|
lsmss2 |
|- ( ( S e. ( SubGrp ` G ) /\ { .0. } e. ( SubGrp ` G ) /\ { .0. } C_ S ) -> ( S .(+) { .0. } ) = S ) |
| 147 |
36 138 142 146
|
syl3anc |
|- ( ph -> ( S .(+) { .0. } ) = S ) |
| 148 |
147
|
eqeq1d |
|- ( ph -> ( ( S .(+) { .0. } ) = U <-> S = U ) ) |
| 149 |
148
|
biimpar |
|- ( ( ph /\ S = U ) -> ( S .(+) { .0. } ) = U ) |
| 150 |
|
ineq2 |
|- ( t = { .0. } -> ( S i^i t ) = ( S i^i { .0. } ) ) |
| 151 |
150
|
eqeq1d |
|- ( t = { .0. } -> ( ( S i^i t ) = { .0. } <-> ( S i^i { .0. } ) = { .0. } ) ) |
| 152 |
|
oveq2 |
|- ( t = { .0. } -> ( S .(+) t ) = ( S .(+) { .0. } ) ) |
| 153 |
152
|
eqeq1d |
|- ( t = { .0. } -> ( ( S .(+) t ) = U <-> ( S .(+) { .0. } ) = U ) ) |
| 154 |
151 153
|
anbi12d |
|- ( t = { .0. } -> ( ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = U ) <-> ( ( S i^i { .0. } ) = { .0. } /\ ( S .(+) { .0. } ) = U ) ) ) |
| 155 |
154
|
rspcev |
|- ( ( { .0. } e. ( SubGrp ` G ) /\ ( ( S i^i { .0. } ) = { .0. } /\ ( S .(+) { .0. } ) = U ) ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = U ) ) |
| 156 |
139 145 149 155
|
syl12anc |
|- ( ( ph /\ S = U ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = U ) ) |
| 157 |
156
|
ex |
|- ( ph -> ( S = U -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = U ) ) ) |
| 158 |
1
|
mrcsscl |
|- ( ( ( SubGrp ` G ) e. ( Moore ` B ) /\ { A } C_ U /\ U e. ( SubGrp ` G ) ) -> ( K ` { A } ) C_ U ) |
| 159 |
30 39 12 158
|
syl3anc |
|- ( ph -> ( K ` { A } ) C_ U ) |
| 160 |
2 159
|
eqsstrid |
|- ( ph -> S C_ U ) |
| 161 |
|
sspss |
|- ( S C_ U <-> ( S C. U \/ S = U ) ) |
| 162 |
160 161
|
sylib |
|- ( ph -> ( S C. U \/ S = U ) ) |
| 163 |
136 157 162
|
mpjaod |
|- ( ph -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = U ) ) |