| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntsval.1 | ⊢ 𝑆  =  ( 𝑎  ∈  ℝ  ↦  Σ 𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑎 ) ) ( ( Λ ‘ 𝑖 )  ·  ( ( log ‘ 𝑖 )  +  ( ψ ‘ ( 𝑎  /  𝑖 ) ) ) ) ) | 
						
							| 2 |  | pntrlog2bnd.r | ⊢ 𝑅  =  ( 𝑎  ∈  ℝ+  ↦  ( ( ψ ‘ 𝑎 )  −  𝑎 ) ) | 
						
							| 3 |  | pntrlog2bnd.t | ⊢ 𝑇  =  ( 𝑎  ∈  ℝ  ↦  if ( 𝑎  ∈  ℝ+ ,  ( 𝑎  ·  ( log ‘ 𝑎 ) ) ,  0 ) ) | 
						
							| 4 |  | pntrlog2bndlem5.1 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ+ ) | 
						
							| 5 |  | pntrlog2bndlem5.2 | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  ℝ+ ( abs ‘ ( ( 𝑅 ‘ 𝑦 )  /  𝑦 ) )  ≤  𝐵 ) | 
						
							| 6 |  | pntrlog2bndlem6.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 7 |  | pntrlog2bndlem6.2 | ⊢ ( 𝜑  →  1  ≤  𝐴 ) | 
						
							| 8 |  | elioore | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  →  𝑥  ∈  ℝ ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  𝑥  ∈  ℝ ) | 
						
							| 10 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 11 | 10 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  1  ∈  ℝ+ ) | 
						
							| 12 | 11 | rpred | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  1  ∈  ℝ ) | 
						
							| 13 |  | eliooord | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  →  ( 1  <  𝑥  ∧  𝑥  <  +∞ ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( 1  <  𝑥  ∧  𝑥  <  +∞ ) ) | 
						
							| 15 | 14 | simpld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  1  <  𝑥 ) | 
						
							| 16 | 12 9 15 | ltled | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  1  ≤  𝑥 ) | 
						
							| 17 | 9 11 16 | rpgecld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  𝑥  ∈  ℝ+ ) | 
						
							| 18 | 10 | a1i | ⊢ ( 𝜑  →  1  ∈  ℝ+ ) | 
						
							| 19 | 6 18 7 | rpgecld | ⊢ ( 𝜑  →  𝐴  ∈  ℝ+ ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  𝐴  ∈  ℝ+ ) | 
						
							| 21 | 17 20 | rpdivcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( 𝑥  /  𝐴 )  ∈  ℝ+ ) | 
						
							| 22 | 21 | rprege0d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( 𝑥  /  𝐴 )  ∈  ℝ  ∧  0  ≤  ( 𝑥  /  𝐴 ) ) ) | 
						
							| 23 |  | flge0nn0 | ⊢ ( ( ( 𝑥  /  𝐴 )  ∈  ℝ  ∧  0  ≤  ( 𝑥  /  𝐴 ) )  →  ( ⌊ ‘ ( 𝑥  /  𝐴 ) )  ∈  ℕ0 ) | 
						
							| 24 |  | nn0p1nn | ⊢ ( ( ⌊ ‘ ( 𝑥  /  𝐴 ) )  ∈  ℕ0  →  ( ( ⌊ ‘ ( 𝑥  /  𝐴 ) )  +  1 )  ∈  ℕ ) | 
						
							| 25 | 22 23 24 | 3syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ⌊ ‘ ( 𝑥  /  𝐴 ) )  +  1 )  ∈  ℕ ) | 
						
							| 26 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 27 | 25 26 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ⌊ ‘ ( 𝑥  /  𝐴 ) )  +  1 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 28 | 21 | rpred | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( 𝑥  /  𝐴 )  ∈  ℝ ) | 
						
							| 29 | 17 | rpge0d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  0  ≤  𝑥 ) | 
						
							| 30 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  1  ≤  𝐴 ) | 
						
							| 31 | 11 20 9 29 30 | lediv2ad | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( 𝑥  /  𝐴 )  ≤  ( 𝑥  /  1 ) ) | 
						
							| 32 | 9 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  𝑥  ∈  ℂ ) | 
						
							| 33 | 32 | div1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( 𝑥  /  1 )  =  𝑥 ) | 
						
							| 34 | 31 33 | breqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( 𝑥  /  𝐴 )  ≤  𝑥 ) | 
						
							| 35 |  | flword2 | ⊢ ( ( ( 𝑥  /  𝐴 )  ∈  ℝ  ∧  𝑥  ∈  ℝ  ∧  ( 𝑥  /  𝐴 )  ≤  𝑥 )  →  ( ⌊ ‘ 𝑥 )  ∈  ( ℤ≥ ‘ ( ⌊ ‘ ( 𝑥  /  𝐴 ) ) ) ) | 
						
							| 36 | 28 9 34 35 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ⌊ ‘ 𝑥 )  ∈  ( ℤ≥ ‘ ( ⌊ ‘ ( 𝑥  /  𝐴 ) ) ) ) | 
						
							| 37 |  | fzsplit2 | ⊢ ( ( ( ( ⌊ ‘ ( 𝑥  /  𝐴 ) )  +  1 )  ∈  ( ℤ≥ ‘ 1 )  ∧  ( ⌊ ‘ 𝑥 )  ∈  ( ℤ≥ ‘ ( ⌊ ‘ ( 𝑥  /  𝐴 ) ) ) )  →  ( 1 ... ( ⌊ ‘ 𝑥 ) )  =  ( ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝐴 ) ) )  ∪  ( ( ( ⌊ ‘ ( 𝑥  /  𝐴 ) )  +  1 ) ... ( ⌊ ‘ 𝑥 ) ) ) ) | 
						
							| 38 | 27 36 37 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( 1 ... ( ⌊ ‘ 𝑥 ) )  =  ( ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝐴 ) ) )  ∪  ( ( ( ⌊ ‘ ( 𝑥  /  𝐴 ) )  +  1 ) ... ( ⌊ ‘ 𝑥 ) ) ) ) |