| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntsval.1 |  |-  S = ( a e. RR |-> sum_ i e. ( 1 ... ( |_ ` a ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) ) | 
						
							| 2 |  | pntrlog2bnd.r |  |-  R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) | 
						
							| 3 |  | pntrlog2bnd.t |  |-  T = ( a e. RR |-> if ( a e. RR+ , ( a x. ( log ` a ) ) , 0 ) ) | 
						
							| 4 |  | pntrlog2bndlem5.1 |  |-  ( ph -> B e. RR+ ) | 
						
							| 5 |  | pntrlog2bndlem5.2 |  |-  ( ph -> A. y e. RR+ ( abs ` ( ( R ` y ) / y ) ) <_ B ) | 
						
							| 6 |  | pntrlog2bndlem6.1 |  |-  ( ph -> A e. RR ) | 
						
							| 7 |  | pntrlog2bndlem6.2 |  |-  ( ph -> 1 <_ A ) | 
						
							| 8 |  | elioore |  |-  ( x e. ( 1 (,) +oo ) -> x e. RR ) | 
						
							| 9 | 8 | adantl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. RR ) | 
						
							| 10 |  | 1rp |  |-  1 e. RR+ | 
						
							| 11 | 10 | a1i |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR+ ) | 
						
							| 12 | 11 | rpred |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR ) | 
						
							| 13 |  | eliooord |  |-  ( x e. ( 1 (,) +oo ) -> ( 1 < x /\ x < +oo ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 < x /\ x < +oo ) ) | 
						
							| 15 | 14 | simpld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 < x ) | 
						
							| 16 | 12 9 15 | ltled |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 <_ x ) | 
						
							| 17 | 9 11 16 | rpgecld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. RR+ ) | 
						
							| 18 | 10 | a1i |  |-  ( ph -> 1 e. RR+ ) | 
						
							| 19 | 6 18 7 | rpgecld |  |-  ( ph -> A e. RR+ ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> A e. RR+ ) | 
						
							| 21 | 17 20 | rpdivcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x / A ) e. RR+ ) | 
						
							| 22 | 21 | rprege0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( x / A ) e. RR /\ 0 <_ ( x / A ) ) ) | 
						
							| 23 |  | flge0nn0 |  |-  ( ( ( x / A ) e. RR /\ 0 <_ ( x / A ) ) -> ( |_ ` ( x / A ) ) e. NN0 ) | 
						
							| 24 |  | nn0p1nn |  |-  ( ( |_ ` ( x / A ) ) e. NN0 -> ( ( |_ ` ( x / A ) ) + 1 ) e. NN ) | 
						
							| 25 | 22 23 24 | 3syl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( |_ ` ( x / A ) ) + 1 ) e. NN ) | 
						
							| 26 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 27 | 25 26 | eleqtrdi |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( |_ ` ( x / A ) ) + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 28 | 21 | rpred |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x / A ) e. RR ) | 
						
							| 29 | 17 | rpge0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ x ) | 
						
							| 30 | 7 | adantr |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 <_ A ) | 
						
							| 31 | 11 20 9 29 30 | lediv2ad |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x / A ) <_ ( x / 1 ) ) | 
						
							| 32 | 9 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. CC ) | 
						
							| 33 | 32 | div1d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x / 1 ) = x ) | 
						
							| 34 | 31 33 | breqtrd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x / A ) <_ x ) | 
						
							| 35 |  | flword2 |  |-  ( ( ( x / A ) e. RR /\ x e. RR /\ ( x / A ) <_ x ) -> ( |_ ` x ) e. ( ZZ>= ` ( |_ ` ( x / A ) ) ) ) | 
						
							| 36 | 28 9 34 35 | syl3anc |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( |_ ` x ) e. ( ZZ>= ` ( |_ ` ( x / A ) ) ) ) | 
						
							| 37 |  | fzsplit2 |  |-  ( ( ( ( |_ ` ( x / A ) ) + 1 ) e. ( ZZ>= ` 1 ) /\ ( |_ ` x ) e. ( ZZ>= ` ( |_ ` ( x / A ) ) ) ) -> ( 1 ... ( |_ ` x ) ) = ( ( 1 ... ( |_ ` ( x / A ) ) ) u. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) ) | 
						
							| 38 | 27 36 37 | syl2anc |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` x ) ) = ( ( 1 ... ( |_ ` ( x / A ) ) ) u. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) ) |