| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntsval.1 |  |-  S = ( a e. RR |-> sum_ i e. ( 1 ... ( |_ ` a ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) ) | 
						
							| 2 |  | pntrlog2bnd.r |  |-  R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) | 
						
							| 3 |  | pntrlog2bnd.t |  |-  T = ( a e. RR |-> if ( a e. RR+ , ( a x. ( log ` a ) ) , 0 ) ) | 
						
							| 4 |  | pntrlog2bndlem5.1 |  |-  ( ph -> B e. RR+ ) | 
						
							| 5 |  | pntrlog2bndlem5.2 |  |-  ( ph -> A. y e. RR+ ( abs ` ( ( R ` y ) / y ) ) <_ B ) | 
						
							| 6 |  | pntrlog2bndlem6.1 |  |-  ( ph -> A e. RR ) | 
						
							| 7 |  | pntrlog2bndlem6.2 |  |-  ( ph -> 1 <_ A ) | 
						
							| 8 |  | elioore |  |-  ( x e. ( 1 (,) +oo ) -> x e. RR ) | 
						
							| 9 | 8 | adantl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. RR ) | 
						
							| 10 |  | 1rp |  |-  1 e. RR+ | 
						
							| 11 | 10 | a1i |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR+ ) | 
						
							| 12 |  | 1red |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR ) | 
						
							| 13 |  | eliooord |  |-  ( x e. ( 1 (,) +oo ) -> ( 1 < x /\ x < +oo ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 < x /\ x < +oo ) ) | 
						
							| 15 | 14 | simpld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 < x ) | 
						
							| 16 | 12 9 15 | ltled |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 <_ x ) | 
						
							| 17 | 9 11 16 | rpgecld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. RR+ ) | 
						
							| 18 | 2 | pntrf |  |-  R : RR+ --> RR | 
						
							| 19 | 18 | ffvelcdmi |  |-  ( x e. RR+ -> ( R ` x ) e. RR ) | 
						
							| 20 | 17 19 | syl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( R ` x ) e. RR ) | 
						
							| 21 | 20 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( R ` x ) e. CC ) | 
						
							| 22 | 21 | abscld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( R ` x ) ) e. RR ) | 
						
							| 23 | 17 | relogcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR ) | 
						
							| 24 | 22 23 | remulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) e. RR ) | 
						
							| 25 |  | 2re |  |-  2 e. RR | 
						
							| 26 | 25 | a1i |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 2 e. RR ) | 
						
							| 27 | 9 15 | rplogcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR+ ) | 
						
							| 28 | 26 27 | rerpdivcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 / ( log ` x ) ) e. RR ) | 
						
							| 29 |  | fzfid |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) | 
						
							| 30 | 17 | adantr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR+ ) | 
						
							| 31 |  | elfznn |  |-  ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) | 
						
							| 32 | 31 | adantl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) | 
						
							| 33 | 32 | nnrpd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) | 
						
							| 34 | 30 33 | rpdivcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR+ ) | 
						
							| 35 | 18 | ffvelcdmi |  |-  ( ( x / n ) e. RR+ -> ( R ` ( x / n ) ) e. RR ) | 
						
							| 36 | 34 35 | syl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / n ) ) e. RR ) | 
						
							| 37 | 36 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / n ) ) e. CC ) | 
						
							| 38 | 37 | abscld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( R ` ( x / n ) ) ) e. RR ) | 
						
							| 39 | 33 | relogcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) e. RR ) | 
						
							| 40 | 38 39 | remulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) e. RR ) | 
						
							| 41 | 29 40 | fsumrecl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) e. RR ) | 
						
							| 42 | 28 41 | remulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) e. RR ) | 
						
							| 43 | 24 42 | resubcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) e. RR ) | 
						
							| 44 | 43 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) e. CC ) | 
						
							| 45 |  | fzfid |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) e. Fin ) | 
						
							| 46 |  | ssun2 |  |-  ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) C_ ( ( 1 ... ( |_ ` ( x / A ) ) ) u. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) | 
						
							| 47 | 1 2 3 4 5 6 7 | pntrlog2bndlem6a |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` x ) ) = ( ( 1 ... ( |_ ` ( x / A ) ) ) u. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) ) | 
						
							| 48 | 46 47 | sseqtrrid |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) C_ ( 1 ... ( |_ ` x ) ) ) | 
						
							| 49 | 48 | sselda |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> n e. ( 1 ... ( |_ ` x ) ) ) | 
						
							| 50 | 49 40 | syldan |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) e. RR ) | 
						
							| 51 | 45 50 | fsumrecl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) e. RR ) | 
						
							| 52 | 28 51 | remulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) e. RR ) | 
						
							| 53 | 52 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) e. CC ) | 
						
							| 54 | 9 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. CC ) | 
						
							| 55 | 17 | rpne0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x =/= 0 ) | 
						
							| 56 | 44 53 54 55 | divdird |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) = ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) / x ) ) ) | 
						
							| 57 | 24 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) e. CC ) | 
						
							| 58 | 42 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) e. CC ) | 
						
							| 59 | 57 58 53 | subsubd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) ) = ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) ) | 
						
							| 60 | 28 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 / ( log ` x ) ) e. CC ) | 
						
							| 61 | 41 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) e. CC ) | 
						
							| 62 | 51 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) e. CC ) | 
						
							| 63 | 60 61 62 | subdid |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) - sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) ) | 
						
							| 64 |  | fzfid |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` ( x / A ) ) ) e. Fin ) | 
						
							| 65 |  | ssun1 |  |-  ( 1 ... ( |_ ` ( x / A ) ) ) C_ ( ( 1 ... ( |_ ` ( x / A ) ) ) u. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) | 
						
							| 66 | 65 47 | sseqtrrid |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` ( x / A ) ) ) C_ ( 1 ... ( |_ ` x ) ) ) | 
						
							| 67 | 66 | sselda |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ) -> n e. ( 1 ... ( |_ ` x ) ) ) | 
						
							| 68 | 67 40 | syldan |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) e. RR ) | 
						
							| 69 | 64 68 | fsumrecl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) e. RR ) | 
						
							| 70 | 69 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) e. CC ) | 
						
							| 71 | 10 | a1i |  |-  ( ph -> 1 e. RR+ ) | 
						
							| 72 | 6 71 7 | rpgecld |  |-  ( ph -> A e. RR+ ) | 
						
							| 73 | 72 | adantr |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> A e. RR+ ) | 
						
							| 74 | 9 73 | rerpdivcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x / A ) e. RR ) | 
						
							| 75 |  | reflcl |  |-  ( ( x / A ) e. RR -> ( |_ ` ( x / A ) ) e. RR ) | 
						
							| 76 | 74 75 | syl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( |_ ` ( x / A ) ) e. RR ) | 
						
							| 77 | 76 | ltp1d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( |_ ` ( x / A ) ) < ( ( |_ ` ( x / A ) ) + 1 ) ) | 
						
							| 78 |  | fzdisj |  |-  ( ( |_ ` ( x / A ) ) < ( ( |_ ` ( x / A ) ) + 1 ) -> ( ( 1 ... ( |_ ` ( x / A ) ) ) i^i ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) = (/) ) | 
						
							| 79 | 77 78 | syl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 1 ... ( |_ ` ( x / A ) ) ) i^i ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) = (/) ) | 
						
							| 80 | 40 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) e. CC ) | 
						
							| 81 | 79 47 29 80 | fsumsplit |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) = ( sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) + sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) | 
						
							| 82 | 70 62 81 | mvrraddd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) - sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) = sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) | 
						
							| 83 | 82 | oveq2d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) - sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) | 
						
							| 84 | 63 83 | eqtr3d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) | 
						
							| 85 | 84 | oveq2d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) ) = ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) ) | 
						
							| 86 | 59 85 | eqtr3d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) = ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) ) | 
						
							| 87 | 86 | oveq1d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) = ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) ) | 
						
							| 88 | 56 87 | eqtr3d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) / x ) ) = ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) ) | 
						
							| 89 | 88 | mpteq2dva |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) / x ) ) ) = ( x e. ( 1 (,) +oo ) |-> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) ) ) | 
						
							| 90 | 43 17 | rerpdivcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) e. RR ) | 
						
							| 91 | 52 17 | rerpdivcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) / x ) e. RR ) | 
						
							| 92 | 1 2 3 4 5 | pntrlog2bndlem5 |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) ) e. <_O(1) ) | 
						
							| 93 |  | ioossre |  |-  ( 1 (,) +oo ) C_ RR | 
						
							| 94 | 93 | a1i |  |-  ( ph -> ( 1 (,) +oo ) C_ RR ) | 
						
							| 95 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 96 | 25 | a1i |  |-  ( ph -> 2 e. RR ) | 
						
							| 97 | 4 | rpred |  |-  ( ph -> B e. RR ) | 
						
							| 98 | 72 | relogcld |  |-  ( ph -> ( log ` A ) e. RR ) | 
						
							| 99 | 98 95 | readdcld |  |-  ( ph -> ( ( log ` A ) + 1 ) e. RR ) | 
						
							| 100 | 97 99 | remulcld |  |-  ( ph -> ( B x. ( ( log ` A ) + 1 ) ) e. RR ) | 
						
							| 101 | 96 100 | remulcld |  |-  ( ph -> ( 2 x. ( B x. ( ( log ` A ) + 1 ) ) ) e. RR ) | 
						
							| 102 | 51 27 | rerpdivcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) / ( log ` x ) ) e. RR ) | 
						
							| 103 | 97 | adantr |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> B e. RR ) | 
						
							| 104 | 73 | relogcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` A ) e. RR ) | 
						
							| 105 | 104 12 | readdcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` A ) + 1 ) e. RR ) | 
						
							| 106 | 103 105 | remulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( B x. ( ( log ` A ) + 1 ) ) e. RR ) | 
						
							| 107 | 9 106 | remulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( B x. ( ( log ` A ) + 1 ) ) ) e. RR ) | 
						
							| 108 |  | 2rp |  |-  2 e. RR+ | 
						
							| 109 | 108 | a1i |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 2 e. RR+ ) | 
						
							| 110 | 109 | rpge0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ 2 ) | 
						
							| 111 | 103 9 | remulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( B x. x ) e. RR ) | 
						
							| 112 | 49 31 | syl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> n e. NN ) | 
						
							| 113 | 112 | nnrecred |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( 1 / n ) e. RR ) | 
						
							| 114 | 45 113 | fsumrecl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( 1 / n ) e. RR ) | 
						
							| 115 | 111 114 | remulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( B x. x ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( 1 / n ) ) e. RR ) | 
						
							| 116 | 27 | adantr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( log ` x ) e. RR+ ) | 
						
							| 117 | 50 116 | rerpdivcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) / ( log ` x ) ) e. RR ) | 
						
							| 118 | 103 | adantr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> B e. RR ) | 
						
							| 119 | 9 | adantr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> x e. RR ) | 
						
							| 120 | 118 119 | remulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( B x. x ) e. RR ) | 
						
							| 121 | 120 113 | remulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( ( B x. x ) x. ( 1 / n ) ) e. RR ) | 
						
							| 122 | 49 38 | syldan |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( abs ` ( R ` ( x / n ) ) ) e. RR ) | 
						
							| 123 | 119 112 | nndivred |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( x / n ) e. RR ) | 
						
							| 124 | 118 123 | remulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( B x. ( x / n ) ) e. RR ) | 
						
							| 125 | 49 33 | syldan |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> n e. RR+ ) | 
						
							| 126 | 125 | relogcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( log ` n ) e. RR ) | 
						
							| 127 | 17 | adantr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> x e. RR+ ) | 
						
							| 128 | 127 | relogcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( log ` x ) e. RR ) | 
						
							| 129 | 49 37 | syldan |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( R ` ( x / n ) ) e. CC ) | 
						
							| 130 | 129 | absge0d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> 0 <_ ( abs ` ( R ` ( x / n ) ) ) ) | 
						
							| 131 |  | elfzle2 |  |-  ( n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) -> n <_ ( |_ ` x ) ) | 
						
							| 132 | 131 | adantl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> n <_ ( |_ ` x ) ) | 
						
							| 133 | 112 | nnzd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> n e. ZZ ) | 
						
							| 134 |  | flge |  |-  ( ( x e. RR /\ n e. ZZ ) -> ( n <_ x <-> n <_ ( |_ ` x ) ) ) | 
						
							| 135 | 119 133 134 | syl2anc |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( n <_ x <-> n <_ ( |_ ` x ) ) ) | 
						
							| 136 | 132 135 | mpbird |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> n <_ x ) | 
						
							| 137 | 125 127 | logled |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( n <_ x <-> ( log ` n ) <_ ( log ` x ) ) ) | 
						
							| 138 | 136 137 | mpbid |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( log ` n ) <_ ( log ` x ) ) | 
						
							| 139 | 126 128 122 130 138 | lemul2ad |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) <_ ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` x ) ) ) | 
						
							| 140 | 50 122 116 | ledivmul2d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) / ( log ` x ) ) <_ ( abs ` ( R ` ( x / n ) ) ) <-> ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) <_ ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` x ) ) ) ) | 
						
							| 141 | 139 140 | mpbird |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) / ( log ` x ) ) <_ ( abs ` ( R ` ( x / n ) ) ) ) | 
						
							| 142 | 123 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( x / n ) e. CC ) | 
						
							| 143 | 49 34 | syldan |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( x / n ) e. RR+ ) | 
						
							| 144 | 143 | rpne0d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( x / n ) =/= 0 ) | 
						
							| 145 | 129 142 144 | absdivd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( abs ` ( ( R ` ( x / n ) ) / ( x / n ) ) ) = ( ( abs ` ( R ` ( x / n ) ) ) / ( abs ` ( x / n ) ) ) ) | 
						
							| 146 | 17 | rpge0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ x ) | 
						
							| 147 | 146 | adantr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> 0 <_ x ) | 
						
							| 148 | 119 125 147 | divge0d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> 0 <_ ( x / n ) ) | 
						
							| 149 | 123 148 | absidd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( abs ` ( x / n ) ) = ( x / n ) ) | 
						
							| 150 | 149 | oveq2d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) / ( abs ` ( x / n ) ) ) = ( ( abs ` ( R ` ( x / n ) ) ) / ( x / n ) ) ) | 
						
							| 151 | 145 150 | eqtrd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( abs ` ( ( R ` ( x / n ) ) / ( x / n ) ) ) = ( ( abs ` ( R ` ( x / n ) ) ) / ( x / n ) ) ) | 
						
							| 152 |  | fveq2 |  |-  ( y = ( x / n ) -> ( R ` y ) = ( R ` ( x / n ) ) ) | 
						
							| 153 |  | id |  |-  ( y = ( x / n ) -> y = ( x / n ) ) | 
						
							| 154 | 152 153 | oveq12d |  |-  ( y = ( x / n ) -> ( ( R ` y ) / y ) = ( ( R ` ( x / n ) ) / ( x / n ) ) ) | 
						
							| 155 | 154 | fveq2d |  |-  ( y = ( x / n ) -> ( abs ` ( ( R ` y ) / y ) ) = ( abs ` ( ( R ` ( x / n ) ) / ( x / n ) ) ) ) | 
						
							| 156 | 155 | breq1d |  |-  ( y = ( x / n ) -> ( ( abs ` ( ( R ` y ) / y ) ) <_ B <-> ( abs ` ( ( R ` ( x / n ) ) / ( x / n ) ) ) <_ B ) ) | 
						
							| 157 | 5 | ad2antrr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> A. y e. RR+ ( abs ` ( ( R ` y ) / y ) ) <_ B ) | 
						
							| 158 | 156 157 143 | rspcdva |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( abs ` ( ( R ` ( x / n ) ) / ( x / n ) ) ) <_ B ) | 
						
							| 159 | 151 158 | eqbrtrrd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) / ( x / n ) ) <_ B ) | 
						
							| 160 | 122 118 143 | ledivmul2d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( R ` ( x / n ) ) ) / ( x / n ) ) <_ B <-> ( abs ` ( R ` ( x / n ) ) ) <_ ( B x. ( x / n ) ) ) ) | 
						
							| 161 | 159 160 | mpbid |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( abs ` ( R ` ( x / n ) ) ) <_ ( B x. ( x / n ) ) ) | 
						
							| 162 | 117 122 124 141 161 | letrd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) / ( log ` x ) ) <_ ( B x. ( x / n ) ) ) | 
						
							| 163 | 118 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> B e. CC ) | 
						
							| 164 | 54 | adantr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> x e. CC ) | 
						
							| 165 | 112 | nncnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> n e. CC ) | 
						
							| 166 | 112 | nnne0d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> n =/= 0 ) | 
						
							| 167 | 163 164 165 166 | divassd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( ( B x. x ) / n ) = ( B x. ( x / n ) ) ) | 
						
							| 168 | 163 164 | mulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( B x. x ) e. CC ) | 
						
							| 169 | 168 165 166 | divrecd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( ( B x. x ) / n ) = ( ( B x. x ) x. ( 1 / n ) ) ) | 
						
							| 170 | 167 169 | eqtr3d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( B x. ( x / n ) ) = ( ( B x. x ) x. ( 1 / n ) ) ) | 
						
							| 171 | 162 170 | breqtrd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) / ( log ` x ) ) <_ ( ( B x. x ) x. ( 1 / n ) ) ) | 
						
							| 172 | 45 117 121 171 | fsumle |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) / ( log ` x ) ) <_ sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( B x. x ) x. ( 1 / n ) ) ) | 
						
							| 173 | 23 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. CC ) | 
						
							| 174 | 49 80 | syldan |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) e. CC ) | 
						
							| 175 | 27 | rpne0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) =/= 0 ) | 
						
							| 176 | 45 173 174 175 | fsumdivc |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) / ( log ` x ) ) = sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) / ( log ` x ) ) ) | 
						
							| 177 | 103 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> B e. CC ) | 
						
							| 178 | 177 54 | mulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( B x. x ) e. CC ) | 
						
							| 179 | 113 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( 1 / n ) e. CC ) | 
						
							| 180 | 45 178 179 | fsummulc2 |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( B x. x ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( 1 / n ) ) = sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( B x. x ) x. ( 1 / n ) ) ) | 
						
							| 181 | 172 176 180 | 3brtr4d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) / ( log ` x ) ) <_ ( ( B x. x ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( 1 / n ) ) ) | 
						
							| 182 | 4 | adantr |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> B e. RR+ ) | 
						
							| 183 | 182 | rpge0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ B ) | 
						
							| 184 | 103 9 183 146 | mulge0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( B x. x ) ) | 
						
							| 185 | 32 | nnrecred |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / n ) e. RR ) | 
						
							| 186 | 29 185 | fsumrecl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) e. RR ) | 
						
							| 187 | 23 104 | resubcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) - ( log ` A ) ) e. RR ) | 
						
							| 188 | 23 12 | readdcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) + 1 ) e. RR ) | 
						
							| 189 | 67 185 | syldan |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ) -> ( 1 / n ) e. RR ) | 
						
							| 190 | 64 189 | fsumrecl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( 1 / n ) e. RR ) | 
						
							| 191 |  | harmonicubnd |  |-  ( ( x e. RR /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) <_ ( ( log ` x ) + 1 ) ) | 
						
							| 192 | 9 16 191 | syl2anc |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) <_ ( ( log ` x ) + 1 ) ) | 
						
							| 193 | 17 73 | relogdivd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` ( x / A ) ) = ( ( log ` x ) - ( log ` A ) ) ) | 
						
							| 194 | 17 73 | rpdivcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x / A ) e. RR+ ) | 
						
							| 195 |  | harmoniclbnd |  |-  ( ( x / A ) e. RR+ -> ( log ` ( x / A ) ) <_ sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( 1 / n ) ) | 
						
							| 196 | 194 195 | syl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` ( x / A ) ) <_ sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( 1 / n ) ) | 
						
							| 197 | 193 196 | eqbrtrrd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) - ( log ` A ) ) <_ sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( 1 / n ) ) | 
						
							| 198 | 186 187 188 190 192 197 | le2subd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( 1 / n ) ) <_ ( ( ( log ` x ) + 1 ) - ( ( log ` x ) - ( log ` A ) ) ) ) | 
						
							| 199 | 67 31 | syl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ) -> n e. NN ) | 
						
							| 200 | 199 | nnrecred |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ) -> ( 1 / n ) e. RR ) | 
						
							| 201 | 64 200 | fsumrecl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( 1 / n ) e. RR ) | 
						
							| 202 | 201 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( 1 / n ) e. CC ) | 
						
							| 203 | 114 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( 1 / n ) e. CC ) | 
						
							| 204 | 32 | nncnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. CC ) | 
						
							| 205 | 32 | nnne0d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n =/= 0 ) | 
						
							| 206 | 204 205 | reccld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / n ) e. CC ) | 
						
							| 207 | 79 47 29 206 | fsumsplit |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) = ( sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( 1 / n ) + sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( 1 / n ) ) ) | 
						
							| 208 | 202 203 207 | mvrladdd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( 1 / n ) ) = sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( 1 / n ) ) | 
						
							| 209 |  | 1cnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 e. CC ) | 
						
							| 210 | 104 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` A ) e. CC ) | 
						
							| 211 | 173 209 210 | pnncand |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( log ` x ) + 1 ) - ( ( log ` x ) - ( log ` A ) ) ) = ( 1 + ( log ` A ) ) ) | 
						
							| 212 | 209 210 211 | comraddd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( log ` x ) + 1 ) - ( ( log ` x ) - ( log ` A ) ) ) = ( ( log ` A ) + 1 ) ) | 
						
							| 213 | 198 208 212 | 3brtr3d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( 1 / n ) <_ ( ( log ` A ) + 1 ) ) | 
						
							| 214 | 114 105 111 184 213 | lemul2ad |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( B x. x ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( 1 / n ) ) <_ ( ( B x. x ) x. ( ( log ` A ) + 1 ) ) ) | 
						
							| 215 | 105 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` A ) + 1 ) e. CC ) | 
						
							| 216 | 177 54 215 | mulassd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( B x. x ) x. ( ( log ` A ) + 1 ) ) = ( B x. ( x x. ( ( log ` A ) + 1 ) ) ) ) | 
						
							| 217 | 177 54 215 | mul12d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( B x. ( x x. ( ( log ` A ) + 1 ) ) ) = ( x x. ( B x. ( ( log ` A ) + 1 ) ) ) ) | 
						
							| 218 | 216 217 | eqtrd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( B x. x ) x. ( ( log ` A ) + 1 ) ) = ( x x. ( B x. ( ( log ` A ) + 1 ) ) ) ) | 
						
							| 219 | 214 218 | breqtrd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( B x. x ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( 1 / n ) ) <_ ( x x. ( B x. ( ( log ` A ) + 1 ) ) ) ) | 
						
							| 220 | 102 115 107 181 219 | letrd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) / ( log ` x ) ) <_ ( x x. ( B x. ( ( log ` A ) + 1 ) ) ) ) | 
						
							| 221 | 102 107 26 110 220 | lemul2ad |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) / ( log ` x ) ) ) <_ ( 2 x. ( x x. ( B x. ( ( log ` A ) + 1 ) ) ) ) ) | 
						
							| 222 |  | 2cnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 2 e. CC ) | 
						
							| 223 | 222 173 62 175 | div32d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) = ( 2 x. ( sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) / ( log ` x ) ) ) ) | 
						
							| 224 | 210 209 | addcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` A ) + 1 ) e. CC ) | 
						
							| 225 | 177 224 | mulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( B x. ( ( log ` A ) + 1 ) ) e. CC ) | 
						
							| 226 | 54 222 225 | mul12d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( 2 x. ( B x. ( ( log ` A ) + 1 ) ) ) ) = ( 2 x. ( x x. ( B x. ( ( log ` A ) + 1 ) ) ) ) ) | 
						
							| 227 | 221 223 226 | 3brtr4d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) <_ ( x x. ( 2 x. ( B x. ( ( log ` A ) + 1 ) ) ) ) ) | 
						
							| 228 | 101 | adantr |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( B x. ( ( log ` A ) + 1 ) ) ) e. RR ) | 
						
							| 229 | 52 228 17 | ledivmuld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) / x ) <_ ( 2 x. ( B x. ( ( log ` A ) + 1 ) ) ) <-> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) <_ ( x x. ( 2 x. ( B x. ( ( log ` A ) + 1 ) ) ) ) ) ) | 
						
							| 230 | 227 229 | mpbird |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) / x ) <_ ( 2 x. ( B x. ( ( log ` A ) + 1 ) ) ) ) | 
						
							| 231 | 230 | adantrr |  |-  ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ 1 <_ x ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) / x ) <_ ( 2 x. ( B x. ( ( log ` A ) + 1 ) ) ) ) | 
						
							| 232 | 94 91 95 101 231 | ello1d |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) / x ) ) e. <_O(1) ) | 
						
							| 233 | 90 91 92 232 | lo1add |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) / x ) ) ) e. <_O(1) ) | 
						
							| 234 | 89 233 | eqeltrrd |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) ) e. <_O(1) ) |