Metamath Proof Explorer


Theorem pntrlog2bndlem6

Description: Lemma for pntrlog2bnd . Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016)

Ref Expression
Hypotheses pntsval.1 S=ai=1aΛilogi+ψai
pntrlog2bnd.r R=a+ψaa
pntrlog2bnd.t T=aifa+aloga0
pntrlog2bndlem5.1 φB+
pntrlog2bndlem5.2 φy+RyyB
pntrlog2bndlem6.1 φA
pntrlog2bndlem6.2 φ1A
Assertion pntrlog2bndlem6 φx1+∞Rxlogx2logxn=1xARxnlognx𝑂1

Proof

Step Hyp Ref Expression
1 pntsval.1 S=ai=1aΛilogi+ψai
2 pntrlog2bnd.r R=a+ψaa
3 pntrlog2bnd.t T=aifa+aloga0
4 pntrlog2bndlem5.1 φB+
5 pntrlog2bndlem5.2 φy+RyyB
6 pntrlog2bndlem6.1 φA
7 pntrlog2bndlem6.2 φ1A
8 elioore x1+∞x
9 8 adantl φx1+∞x
10 1rp 1+
11 10 a1i φx1+∞1+
12 1red φx1+∞1
13 eliooord x1+∞1<xx<+∞
14 13 adantl φx1+∞1<xx<+∞
15 14 simpld φx1+∞1<x
16 12 9 15 ltled φx1+∞1x
17 9 11 16 rpgecld φx1+∞x+
18 2 pntrf R:+
19 18 ffvelcdmi x+Rx
20 17 19 syl φx1+∞Rx
21 20 recnd φx1+∞Rx
22 21 abscld φx1+∞Rx
23 17 relogcld φx1+∞logx
24 22 23 remulcld φx1+∞Rxlogx
25 2re 2
26 25 a1i φx1+∞2
27 9 15 rplogcld φx1+∞logx+
28 26 27 rerpdivcld φx1+∞2logx
29 fzfid φx1+∞1xFin
30 17 adantr φx1+∞n1xx+
31 elfznn n1xn
32 31 adantl φx1+∞n1xn
33 32 nnrpd φx1+∞n1xn+
34 30 33 rpdivcld φx1+∞n1xxn+
35 18 ffvelcdmi xn+Rxn
36 34 35 syl φx1+∞n1xRxn
37 36 recnd φx1+∞n1xRxn
38 37 abscld φx1+∞n1xRxn
39 33 relogcld φx1+∞n1xlogn
40 38 39 remulcld φx1+∞n1xRxnlogn
41 29 40 fsumrecl φx1+∞n=1xRxnlogn
42 28 41 remulcld φx1+∞2logxn=1xRxnlogn
43 24 42 resubcld φx1+∞Rxlogx2logxn=1xRxnlogn
44 43 recnd φx1+∞Rxlogx2logxn=1xRxnlogn
45 fzfid φx1+∞xA+1xFin
46 ssun2 xA+1x1xAxA+1x
47 1 2 3 4 5 6 7 pntrlog2bndlem6a φx1+∞1x=1xAxA+1x
48 46 47 sseqtrrid φx1+∞xA+1x1x
49 48 sselda φx1+∞nxA+1xn1x
50 49 40 syldan φx1+∞nxA+1xRxnlogn
51 45 50 fsumrecl φx1+∞n=xA+1xRxnlogn
52 28 51 remulcld φx1+∞2logxn=xA+1xRxnlogn
53 52 recnd φx1+∞2logxn=xA+1xRxnlogn
54 9 recnd φx1+∞x
55 17 rpne0d φx1+∞x0
56 44 53 54 55 divdird φx1+∞Rxlogx-2logxn=1xRxnlogn+2logxn=xA+1xRxnlognx=Rxlogx2logxn=1xRxnlognx+2logxn=xA+1xRxnlognx
57 24 recnd φx1+∞Rxlogx
58 42 recnd φx1+∞2logxn=1xRxnlogn
59 57 58 53 subsubd φx1+∞Rxlogx2logxn=1xRxnlogn2logxn=xA+1xRxnlogn=Rxlogx-2logxn=1xRxnlogn+2logxn=xA+1xRxnlogn
60 28 recnd φx1+∞2logx
61 41 recnd φx1+∞n=1xRxnlogn
62 51 recnd φx1+∞n=xA+1xRxnlogn
63 60 61 62 subdid φx1+∞2logxn=1xRxnlognn=xA+1xRxnlogn=2logxn=1xRxnlogn2logxn=xA+1xRxnlogn
64 fzfid φx1+∞1xAFin
65 ssun1 1xA1xAxA+1x
66 65 47 sseqtrrid φx1+∞1xA1x
67 66 sselda φx1+∞n1xAn1x
68 67 40 syldan φx1+∞n1xARxnlogn
69 64 68 fsumrecl φx1+∞n=1xARxnlogn
70 69 recnd φx1+∞n=1xARxnlogn
71 10 a1i φ1+
72 6 71 7 rpgecld φA+
73 72 adantr φx1+∞A+
74 9 73 rerpdivcld φx1+∞xA
75 reflcl xAxA
76 74 75 syl φx1+∞xA
77 76 ltp1d φx1+∞xA<xA+1
78 fzdisj xA<xA+11xAxA+1x=
79 77 78 syl φx1+∞1xAxA+1x=
80 40 recnd φx1+∞n1xRxnlogn
81 79 47 29 80 fsumsplit φx1+∞n=1xRxnlogn=n=1xARxnlogn+n=xA+1xRxnlogn
82 70 62 81 mvrraddd φx1+∞n=1xRxnlognn=xA+1xRxnlogn=n=1xARxnlogn
83 82 oveq2d φx1+∞2logxn=1xRxnlognn=xA+1xRxnlogn=2logxn=1xARxnlogn
84 63 83 eqtr3d φx1+∞2logxn=1xRxnlogn2logxn=xA+1xRxnlogn=2logxn=1xARxnlogn
85 84 oveq2d φx1+∞Rxlogx2logxn=1xRxnlogn2logxn=xA+1xRxnlogn=Rxlogx2logxn=1xARxnlogn
86 59 85 eqtr3d φx1+∞Rxlogx-2logxn=1xRxnlogn+2logxn=xA+1xRxnlogn=Rxlogx2logxn=1xARxnlogn
87 86 oveq1d φx1+∞Rxlogx-2logxn=1xRxnlogn+2logxn=xA+1xRxnlognx=Rxlogx2logxn=1xARxnlognx
88 56 87 eqtr3d φx1+∞Rxlogx2logxn=1xRxnlognx+2logxn=xA+1xRxnlognx=Rxlogx2logxn=1xARxnlognx
89 88 mpteq2dva φx1+∞Rxlogx2logxn=1xRxnlognx+2logxn=xA+1xRxnlognx=x1+∞Rxlogx2logxn=1xARxnlognx
90 43 17 rerpdivcld φx1+∞Rxlogx2logxn=1xRxnlognx
91 52 17 rerpdivcld φx1+∞2logxn=xA+1xRxnlognx
92 1 2 3 4 5 pntrlog2bndlem5 φx1+∞Rxlogx2logxn=1xRxnlognx𝑂1
93 ioossre 1+∞
94 93 a1i φ1+∞
95 1red φ1
96 25 a1i φ2
97 4 rpred φB
98 72 relogcld φlogA
99 98 95 readdcld φlogA+1
100 97 99 remulcld φBlogA+1
101 96 100 remulcld φ2BlogA+1
102 51 27 rerpdivcld φx1+∞n=xA+1xRxnlognlogx
103 97 adantr φx1+∞B
104 73 relogcld φx1+∞logA
105 104 12 readdcld φx1+∞logA+1
106 103 105 remulcld φx1+∞BlogA+1
107 9 106 remulcld φx1+∞xBlogA+1
108 2rp 2+
109 108 a1i φx1+∞2+
110 109 rpge0d φx1+∞02
111 103 9 remulcld φx1+∞Bx
112 49 31 syl φx1+∞nxA+1xn
113 112 nnrecred φx1+∞nxA+1x1n
114 45 113 fsumrecl φx1+∞n=xA+1x1n
115 111 114 remulcld φx1+∞Bxn=xA+1x1n
116 27 adantr φx1+∞nxA+1xlogx+
117 50 116 rerpdivcld φx1+∞nxA+1xRxnlognlogx
118 103 adantr φx1+∞nxA+1xB
119 9 adantr φx1+∞nxA+1xx
120 118 119 remulcld φx1+∞nxA+1xBx
121 120 113 remulcld φx1+∞nxA+1xBx1n
122 49 38 syldan φx1+∞nxA+1xRxn
123 119 112 nndivred φx1+∞nxA+1xxn
124 118 123 remulcld φx1+∞nxA+1xBxn
125 49 33 syldan φx1+∞nxA+1xn+
126 125 relogcld φx1+∞nxA+1xlogn
127 17 adantr φx1+∞nxA+1xx+
128 127 relogcld φx1+∞nxA+1xlogx
129 49 37 syldan φx1+∞nxA+1xRxn
130 129 absge0d φx1+∞nxA+1x0Rxn
131 elfzle2 nxA+1xnx
132 131 adantl φx1+∞nxA+1xnx
133 112 nnzd φx1+∞nxA+1xn
134 flge xnnxnx
135 119 133 134 syl2anc φx1+∞nxA+1xnxnx
136 132 135 mpbird φx1+∞nxA+1xnx
137 125 127 logled φx1+∞nxA+1xnxlognlogx
138 136 137 mpbid φx1+∞nxA+1xlognlogx
139 126 128 122 130 138 lemul2ad φx1+∞nxA+1xRxnlognRxnlogx
140 50 122 116 ledivmul2d φx1+∞nxA+1xRxnlognlogxRxnRxnlognRxnlogx
141 139 140 mpbird φx1+∞nxA+1xRxnlognlogxRxn
142 123 recnd φx1+∞nxA+1xxn
143 49 34 syldan φx1+∞nxA+1xxn+
144 143 rpne0d φx1+∞nxA+1xxn0
145 129 142 144 absdivd φx1+∞nxA+1xRxnxn=Rxnxn
146 17 rpge0d φx1+∞0x
147 146 adantr φx1+∞nxA+1x0x
148 119 125 147 divge0d φx1+∞nxA+1x0xn
149 123 148 absidd φx1+∞nxA+1xxn=xn
150 149 oveq2d φx1+∞nxA+1xRxnxn=Rxnxn
151 145 150 eqtrd φx1+∞nxA+1xRxnxn=Rxnxn
152 fveq2 y=xnRy=Rxn
153 id y=xny=xn
154 152 153 oveq12d y=xnRyy=Rxnxn
155 154 fveq2d y=xnRyy=Rxnxn
156 155 breq1d y=xnRyyBRxnxnB
157 5 ad2antrr φx1+∞nxA+1xy+RyyB
158 156 157 143 rspcdva φx1+∞nxA+1xRxnxnB
159 151 158 eqbrtrrd φx1+∞nxA+1xRxnxnB
160 122 118 143 ledivmul2d φx1+∞nxA+1xRxnxnBRxnBxn
161 159 160 mpbid φx1+∞nxA+1xRxnBxn
162 117 122 124 141 161 letrd φx1+∞nxA+1xRxnlognlogxBxn
163 118 recnd φx1+∞nxA+1xB
164 54 adantr φx1+∞nxA+1xx
165 112 nncnd φx1+∞nxA+1xn
166 112 nnne0d φx1+∞nxA+1xn0
167 163 164 165 166 divassd φx1+∞nxA+1xBxn=Bxn
168 163 164 mulcld φx1+∞nxA+1xBx
169 168 165 166 divrecd φx1+∞nxA+1xBxn=Bx1n
170 167 169 eqtr3d φx1+∞nxA+1xBxn=Bx1n
171 162 170 breqtrd φx1+∞nxA+1xRxnlognlogxBx1n
172 45 117 121 171 fsumle φx1+∞n=xA+1xRxnlognlogxn=xA+1xBx1n
173 23 recnd φx1+∞logx
174 49 80 syldan φx1+∞nxA+1xRxnlogn
175 27 rpne0d φx1+∞logx0
176 45 173 174 175 fsumdivc φx1+∞n=xA+1xRxnlognlogx=n=xA+1xRxnlognlogx
177 103 recnd φx1+∞B
178 177 54 mulcld φx1+∞Bx
179 113 recnd φx1+∞nxA+1x1n
180 45 178 179 fsummulc2 φx1+∞Bxn=xA+1x1n=n=xA+1xBx1n
181 172 176 180 3brtr4d φx1+∞n=xA+1xRxnlognlogxBxn=xA+1x1n
182 4 adantr φx1+∞B+
183 182 rpge0d φx1+∞0B
184 103 9 183 146 mulge0d φx1+∞0Bx
185 32 nnrecred φx1+∞n1x1n
186 29 185 fsumrecl φx1+∞n=1x1n
187 23 104 resubcld φx1+∞logxlogA
188 23 12 readdcld φx1+∞logx+1
189 67 185 syldan φx1+∞n1xA1n
190 64 189 fsumrecl φx1+∞n=1xA1n
191 harmonicubnd x1xn=1x1nlogx+1
192 9 16 191 syl2anc φx1+∞n=1x1nlogx+1
193 17 73 relogdivd φx1+∞logxA=logxlogA
194 17 73 rpdivcld φx1+∞xA+
195 harmoniclbnd xA+logxAn=1xA1n
196 194 195 syl φx1+∞logxAn=1xA1n
197 193 196 eqbrtrrd φx1+∞logxlogAn=1xA1n
198 186 187 188 190 192 197 le2subd φx1+∞n=1x1nn=1xA1nlogx+1-logxlogA
199 67 31 syl φx1+∞n1xAn
200 199 nnrecred φx1+∞n1xA1n
201 64 200 fsumrecl φx1+∞n=1xA1n
202 201 recnd φx1+∞n=1xA1n
203 114 recnd φx1+∞n=xA+1x1n
204 32 nncnd φx1+∞n1xn
205 32 nnne0d φx1+∞n1xn0
206 204 205 reccld φx1+∞n1x1n
207 79 47 29 206 fsumsplit φx1+∞n=1x1n=n=1xA1n+n=xA+1x1n
208 202 203 207 mvrladdd φx1+∞n=1x1nn=1xA1n=n=xA+1x1n
209 1cnd φx1+∞1
210 104 recnd φx1+∞logA
211 173 209 210 pnncand φx1+∞logx+1-logxlogA=1+logA
212 209 210 211 comraddd φx1+∞logx+1-logxlogA=logA+1
213 198 208 212 3brtr3d φx1+∞n=xA+1x1nlogA+1
214 114 105 111 184 213 lemul2ad φx1+∞Bxn=xA+1x1nBxlogA+1
215 105 recnd φx1+∞logA+1
216 177 54 215 mulassd φx1+∞BxlogA+1=BxlogA+1
217 177 54 215 mul12d φx1+∞BxlogA+1=xBlogA+1
218 216 217 eqtrd φx1+∞BxlogA+1=xBlogA+1
219 214 218 breqtrd φx1+∞Bxn=xA+1x1nxBlogA+1
220 102 115 107 181 219 letrd φx1+∞n=xA+1xRxnlognlogxxBlogA+1
221 102 107 26 110 220 lemul2ad φx1+∞2n=xA+1xRxnlognlogx2xBlogA+1
222 2cnd φx1+∞2
223 222 173 62 175 div32d φx1+∞2logxn=xA+1xRxnlogn=2n=xA+1xRxnlognlogx
224 210 209 addcld φx1+∞logA+1
225 177 224 mulcld φx1+∞BlogA+1
226 54 222 225 mul12d φx1+∞x2BlogA+1=2xBlogA+1
227 221 223 226 3brtr4d φx1+∞2logxn=xA+1xRxnlognx2BlogA+1
228 101 adantr φx1+∞2BlogA+1
229 52 228 17 ledivmuld φx1+∞2logxn=xA+1xRxnlognx2BlogA+12logxn=xA+1xRxnlognx2BlogA+1
230 227 229 mpbird φx1+∞2logxn=xA+1xRxnlognx2BlogA+1
231 230 adantrr φx1+∞1x2logxn=xA+1xRxnlognx2BlogA+1
232 94 91 95 101 231 ello1d φx1+∞2logxn=xA+1xRxnlognx𝑂1
233 90 91 92 232 lo1add φx1+∞Rxlogx2logxn=1xRxnlognx+2logxn=xA+1xRxnlognx𝑂1
234 89 233 eqeltrrd φx1+∞Rxlogx2logxn=1xARxnlognx𝑂1