Metamath Proof Explorer


Theorem pntrlog2bndlem6a

Description: Lemma for pntrlog2bndlem6 . (Contributed by Mario Carneiro, 7-Jun-2016)

Ref Expression
Hypotheses pntsval.1 S=ai=1aΛilogi+ψai
pntrlog2bnd.r R=a+ψaa
pntrlog2bnd.t T=aifa+aloga0
pntrlog2bndlem5.1 φB+
pntrlog2bndlem5.2 φy+RyyB
pntrlog2bndlem6.1 φA
pntrlog2bndlem6.2 φ1A
Assertion pntrlog2bndlem6a φx1+∞1x=1xAxA+1x

Proof

Step Hyp Ref Expression
1 pntsval.1 S=ai=1aΛilogi+ψai
2 pntrlog2bnd.r R=a+ψaa
3 pntrlog2bnd.t T=aifa+aloga0
4 pntrlog2bndlem5.1 φB+
5 pntrlog2bndlem5.2 φy+RyyB
6 pntrlog2bndlem6.1 φA
7 pntrlog2bndlem6.2 φ1A
8 elioore x1+∞x
9 8 adantl φx1+∞x
10 1rp 1+
11 10 a1i φx1+∞1+
12 11 rpred φx1+∞1
13 eliooord x1+∞1<xx<+∞
14 13 adantl φx1+∞1<xx<+∞
15 14 simpld φx1+∞1<x
16 12 9 15 ltled φx1+∞1x
17 9 11 16 rpgecld φx1+∞x+
18 10 a1i φ1+
19 6 18 7 rpgecld φA+
20 19 adantr φx1+∞A+
21 17 20 rpdivcld φx1+∞xA+
22 21 rprege0d φx1+∞xA0xA
23 flge0nn0 xA0xAxA0
24 nn0p1nn xA0xA+1
25 22 23 24 3syl φx1+∞xA+1
26 nnuz =1
27 25 26 eleqtrdi φx1+∞xA+11
28 21 rpred φx1+∞xA
29 17 rpge0d φx1+∞0x
30 7 adantr φx1+∞1A
31 11 20 9 29 30 lediv2ad φx1+∞xAx1
32 9 recnd φx1+∞x
33 32 div1d φx1+∞x1=x
34 31 33 breqtrd φx1+∞xAx
35 flword2 xAxxAxxxA
36 28 9 34 35 syl3anc φx1+∞xxA
37 fzsplit2 xA+11xxA1x=1xAxA+1x
38 27 36 37 syl2anc φx1+∞1x=1xAxA+1x